Download the cheat sheets and slides from here

t-l.earth

Tom Lotz Index of / teaChlllg
Jinling Institute of Technology (Nanjing, China)
Research on Microplastics, Hydrology, and Machine Learning Name Last modified Size Description

Apache/2 4.29 (Ubuntu) Server at t-l.earth Port 443

Pythonif & # fr ix if
Python Programming
2025/26

o

Session 09

Tom Lotz (tom.lotz@outlook.com)

01
02
03
04

Content

Brain Activation + Review
Imports and Modules

Reading and Writing Files
Exceptions and Safe Programs

Exercises

Python Programming 2025/26 - Session 9

Brain Activation

Python Programming 2025/26 - Session 9
Brain Activation

Function and Loop

def square(n):
return n %% 2

for number in range(l, 6&):
result = square(number)
print(f"{number} squared is {resuvlt}")

Python Programming 2025/26 - Session 9
Brain Activation

Simple Dictionary

fruits = {
“EpplE": IIPEdII'
"banana": "yellow",
"grape": "purple"

print(f"The color of a banana is {fruits['banana']}.")

Python Programming 2025/26 - Session 9

Review

Python Programming 2025/26 - Session 7
Modeling the Real World

The Core Idea of Object-Oriented Programming (OOP)

* In OOP, we describe things — not just actions. Each object in
code mirrors an object in the real world.

« Concepts:

: the blueprint (defines what all objects of that kind
know and do)

(instance): one specific example of that class
. data values inside each object

. actions that object can perform

Python Programming 2025/26 - Session 7
Introduction to Classes and Objects

Defining a Class

keyword starts a class definition.
initializes new objects.

refers to this particular instance.

class Dog:
def (self, name, age):
seltf.name = name
selt.age = age

Python Programming 2025/26 - Session 7
Introduction to Classes and Objects

Creating an Object

* We can create instances of the Dog class by calling it.

my_dog = Dog('Willie', 6)

« Python calls __init__() automatically.

« my_dog is now an object with data inside.

Python Programming 2025/26 - Session 7
Introduction to Classes and Objects

Adding Behavior (Methods)

« We can add methods to a class.
class Dog:

def (self, name, age):
self.name = name
self.age = age

def sit(self):
print(f"{self.name} is now sitting.")

def roll_over(self):
print(f"{self.name} rolled over!")

« Each method must include self.

Python Programming 2025/26 - Session 7
Introduction to Classes and Objects

Using Methods

* The methods of the instance are called in this way:

my_dog = Dog('Willie', 6)
my_dog.sit() # Willie is now sitting.
my_dog.roll_over() # Willie rolled over!

Python Programming 2025/26 - Session 8
Inheritance

Why Inheritance?

« Sometimes we have several classes that share the same structure
or behavior. Instead of rewriting code, we can reuse it.

« Example:
* Vehicle — common properties: make, model, year.
 ElectricVehicle — adds battery or charging behavior.

 Inheritance saves time and avoids duplication.

Python Programming 2025/26 - Session 8

Inheritance

The Parent Class

 Start with a general class.

class Vehicle:
def (self, make, model, year):
self.make = make
self.model = model
self.year = year

def describe(self):
print(f"{self.year} {self.make} {self.modell}")

Python Programming 2025/26 - Session 8
Inheritance

The Child Class

« Asubclass inherits from the parent.

Child class
class ElectricVehicle(Vehicle):
def (self, make, model, year, battery_capacity):
super().__init__(make, model, year)
self.battery_capacity = battery_capacity

 super() calls the parent’s __init__ () to reuse setup code. Add onl
what’s specific to this subclass.

Python Programming 2025/26 - Session 8
Inheritance

The Child Class

« Asubclass inherits from the parent.

Child class
class ElectricVehicle(Vehicle):
def (self, make, model, year, battery_capacity):
super().__init__(make, model, year)
self.battery_capacity = battery_capacity

 super() calls the parent’s __init__ () to reuse setup code. Add onl
what’s specific to this subclass.

Python Programming 2025/26 - Session 8

Inheritance

Using Inherited Methods

« Child classes automatically get all methods from the parent.

Child class
class ElectricVehicle(Vehicle):
def (self, make, model, year, battery_capacity):
super().__init__(make, model, year)
self.battery_capacity = battery_capacity

my_ev = ElectricVehicle("whatever", "Stellaria", "1999", 20000)

my_ev.describe()

Python Programming 2025/26 - Session 8

Inheritance

Overriding Methods

« A child class can redefine a parent’s method.

Child class with method overwrite
class ElectricVehicle(Vehicle):
def (self, make, model, year, battery_capacity):
super(). (make, model, year)
self.battery_capacity = battery_capacity

def describe(self):
print(f"{self.year} {self.make} {self.model} with {self.battery_capacity} kWh battery")

Python Programming 2025/26 - Session 8
Composition and Object Interaction

The Contained Class

« We define the contained class first.

class Battery:
def (self, capacity):
self.capacity = capacity

def describe_battery(self):
print(f"Battery capacity: {self.capacity} kWh")

Python Programming 2025/26 - Session 8
Composition and Object Interaction

The Container Class

* Include a class as an attribute inside another.

class ElectricVehicle:
def (self, make, model, year, capacity):
self.make = make
self.model = model

self.year = year
self.battery = Battery(capacity) #here is the contained class

def describe(self):
print(f"{self.year} {self.make} {self.model}")
self.battery.describe_battery()

e

. . |
Python Programming 2025/26 - Session 8 —

Composition and Object Interaction class Battery:

\
The Container Class e

Ol

def (self, capacity):
self.capacity = capacity

def describe_battery(self):

* Include a class as an attribute insig print(f"Battery capacity: {self.capacity} kWh-)

class ElectricVehicle:
def (self, make
self.make = m;

Y year, capacity):

self.model =

self.year = ¥y
self.battery = Battery(capacity) #here is the contained class

def describe(self):
print(f"{self.year} {self.make} {self.model}")
self.battery.describe_battery()

e

Python Programming 2025/26 - Session 9

Imports and Modules

Python Programming 2025/26 - Session 9
Imports and Modules

Why Modules?

« Large programs become messy if everything is in one file.
* Modules allow you to:

« Separate logic cleanly

» Reuse classes/functions across files

* Avoid repetition

Python Programming 2025/26 - Session 9
Imports and Modules

Why Modules?

« Example idea:

e car.py — contains Car class
e my_car.py — imports and uses Car

* Modules = clean, organized, reusable code.

Python Programming 2025/26 - Session 9
Imports and Modules

A Module in Python

* A module is simply a .py file that Python can import.

car.py
class Car:

def (self, make):
selt.make = make

Python Programming 2025/26 - Session 9
Imports and Modules

Importing a Single Class

* A module is simply a .py file that Python can import.

from car import Car

my_car = Car("Audi")
print(my_car.make)

Python Programming 2025/26 - Session 9
Imports and Modules

Importing a Single Class

* A module is simply a .py file that Python can import.

from car import Car _ car.py

class Car:
my_car = Car("Audi") def (self, make):
print(my_car.make) ce1f . make = make

Python Programming 2025/26 - Session 9
Imports and Modules

Mini Task 1

 Create two files:
 tools.py

* main.py

 In tools.py: write a function hello() that prints a greeting. In
main.py: import and call hello().

Python Programming 2025/26 - Session 9
Imports and Modules

Importing Multiple Classes

« Asingle module may store several related classes.

class Car:
def (self, make):
self.make = make

class ElectricCar:
def (self, make, battery):
self.make = make
self.battery = battery

Python Programming 2025/26 - Session 9
Imports and Modules

Importing Multiple Classes

« Asingle module may store several related classes.

class Car:
def (self, make):
self.make = make

. from car import Car, ElectricCar
class ElectricCar:

def (self, make, battery):

my_car = Car("Audi")
selt.make = make

my_electric_car = ElectricCar("BYD", 10000)
self.battery = battery

Python Programming 2025/26 - Session 9
Imports and Modules

Importing the Entire Module

« Use this when you want clarity or to avoid name conflicts.

import car

my car = car.Car("Ford")

Python Programming 2025/26 - Session 9
Imports and Modules

Importing the Entire Module

« Use this when you want clarity or to avoid name conflicts.

import car

my car = car.Car("Ford")

Python Programming 2025/26 - Session 9
Imports and Modules

Mini Task 2

 Create a real module and use it:

« Make a file math_tools.py with two functions: add(a, b) and
multiply(a, b).

* |[n main.py, import the module.

» Let the user enter two numbers and print the sum and product.

Python Programming 2025/26 - Session 9
Imports and Modules

Modules Importing Modules

* Modules can import each other (inheritance in this example).

electric_car.py
from car import Car

class ElectricCar(Car):
def (self, make, battery):
super(). (make)
self.battery = battery

Python Programming 2025/26 - Session 9
Imports and Modules

Using Aliases

* Shorten long names:

from electric_car import ElectricCar as EC
leaf = EC("Nissan")

 Or alias entire modules:

import electric _car as ec
car = ec.ElectricCar("Tesla")

Python Programming 2025/26 - Session 9
Imports and Modules

Wrap-up

Modules structure programs into clean files.

Different import styles offer flexibility.

Aliases improve readability.

Modules can import each other.

Python Programming 2025/26 - Session 9

Reading and Writing Files

Python Programming 2025/26 - Session 9
Reading and Writing Files

Why Work With Files?

« Programs become more useful when they can:
« Load data from disk
 Save user progress or results
* Process text, logs, CSV files

« Examples: reading weather data, saving notes, storing game
scores.

Python Programming 2025/26 - Session 9
Reading and Writing Files

Reading a File (Basic)

« Use Path.read_text() to load a file.

from pathlib import Path
path = Path('pi_digits.txt")

contents = path.read_text()
print(contents)

« Reads the entire file as one string.

Python Programming 2025/26 - Session 9
Reading and Writing Files

Stripping Whitespace, splitting lines

« Use Path.read_text() to load a file, then remove whitespaces and
split into lines.

path = Path('pi_digits.txt')
contents = path.read_text()
contents = contents.rstrip()

contents = contents.splitlines()
print(contents)

Python Programming 2025/26 - Session 9
Reading and Writing Files

Mini Task 3

 Download the file notes.txt with three lines of text. Write a
script to:

 Read the file

« Strip trailing whitespace

* Print each line separately after using .splitlines() (hint: you
need a loop)

Python Programming 2025/26 - Session 9
Reading and Writing Files

Writing to a File

« Use write_text() to create or overwrite a file.

from pathlib import Path

path = Path('output.txt"')
path.write_text("Hello from Python!\n")

* This creates the file if it doesn’t exist.

Python Programming 2025/26 - Session 9
Reading and Writing Files

Appending Multiple Lines

* To write multiple lines, build a string with newlines:

contents = "Line 1\n"
contents += "Line 2\n"

path.write_text(contents)

Python Programming 2025/26 - Session 9
Reading and Writing Files

Mini Task 4

* Write a script that:

» Asks the user for three sentences (hint: input())

« Saves all three into sentences.txt, each on its own line

Python Programming 2025/26 - Session 9
Reading and Writing Files

What Is JSON?

« JSON = JavaScript Object Notation

« Text format for structured data
« Works well with Python dictionaries and lists

« Easy to save to and read from files

o Useful for:

* App settings

 User preferences

« Small data files exchanged between programs

Python Programming 2025/26 - Session 9
Reading and Writing Files

Storing a Simple Settings Dict

« Example: language + theme settings.

import json
from pathlib import Path

settings = {
"Language": "en",
"theme": "dark"

Iy

path = Path("settings.json")
json_text = json.dumps(settings)
path.write_text(json_text)

Python Programming 2025/26 - Session 9
Reading and Writing Files

Loading Settings Back

* Read the file, then convert JSON — Python Dictionary.
import json
from pathlib import Path

path = Path("settings.json")
json_text = path.read_text()
settings = json.loads(json_text)

print(settings["language"])
print(settings["theme"])

Python Programming 2025/26 - Session 9
Reading and Writing Files

Mini Task 5

Create a small user profile dictionary:

°* name
e age
e country

Steps:

« Store it into user_profile.json using json.dumps() and
write_text().

* In a new script, read it back and print a nice sentence:
Example: Tom from Germany is 90 years old.

Python Programming 2025/26 - Session 9
Reading and Writing Files

Wrap-up

loads file content.
writes or replaces content.
removes unneeded characters.
helps process files line by line.
« JSON is a text format for structured data (dicts, lists, etc.).

Python object — JSON string.

JSON string — Python object.

Python Programming 2025/26 - Session 9

Exceptions and Safe Programs

Python Programming 2025/26 - Session 9
Exceptions and Safe Programs

What Is an Exception?

« An exception is an error that stops normal program execution.
« Examples:

 Dividing by zero

« Converting text to a number

* Opening a missing file

« Without handling, the program crashes and prints a traceback.

Python Programming 2025/26 - Session 9
Exceptions and Safe Programs

Simple Exception Example

print(5 / 0)

ZeroDivisionError: division by zero

Python Programming 2025/26 - Session 9
Exceptions and Safe Programs

Basic try/except Structure

« Use try for risky code. Use except to catch the error.

try:
print(5 / 0)
except ZeroDivisionError:
print("You can't divide by zero!")

« The program continues running without crashing.

Python Programming 2025/26 - Session 9
Exceptions and Safe Programs

Mini Task 6

* Write a script that:
* Asks the user for two numbers

* Tries to divide them

» Catches ZeroDivisionError and prints a friendly message

Python Programming 2025/26 - Session 9
Exceptions and Safe Programs

The else Block

« Use else when the try block succeeds.
try:
result = 10 / 2
except ZeroDivisionError:
print("Error!")
else:
print(result)

» Keeps the success logic separate and clean.

Python Programming 2025/26 - Session 9
Exceptions and Safe Programs

Handling Bad User Input

« Converting text to a number may fail.

try:

n = int(input("Enter a number: "))
except ValueError:

print("That's not a number.")

* Prevents crashes from invalid input.

Python Programming 2025/26 - Session 9
Exceptions and Safe Programs

Mini Task 7

* Create a simple calculator that:
* Prompts for two numbers
» Uses try/except to catch ValueError

* Prints the sum if inputs are valid

Python Programming 2025/26 - Session 9
Exceptions and Safe Programs

File Errors: Missing Files

« Trying to open a missing file raises FileNotFoundError.

from pathlib import Path
path = Path("unknown.txt")

try:
text = path.read_text()
except FileNotFoundError:
print("File not found.")

Python Programming 2025/26 - Session 9
Exceptions and Safe Programs

Using else with File Reads

« Separate successful read logic.

try:

text = path.read_text()
except FileNotFoundError:

print("File missing.")
else:

print(text)

Python Programming 2025/26 - Session 9
Exceptions and Safe Programs

Mini Task 8

* Write a script that:
« Asks for a filename
* Tries to open it
 |f missing — prints a friendly error

* |f found — prints the content

Python Programming 2025/26 - Session 9
Exceptions and Safe Programs

Chaining Multiple Exceptions

* You can catch different errors separately.

try:
number = int(input("Enter number: "))
result = 10 / number
except ValueError:
print("Please enter a valid integer.")
except ZeroDivisionError:
print("Number cannot be zero.")

Python Programming 2025/26 - Session 9
Exceptions and Safe Programs

Wrap-up

Exceptions prevent crashes and improve user experience.

try/except handles errors.

else keeps clean success logic.

FileNotFoundError and ValueError are common in real programs.

Use multiple except blocks for different problems.

Python Programming 2025/26 - Session 9

Exercises

Python Programming 2025/26 - Session 9
Exercises

Exercise

« We are building a project that grows with each task.

* You can find the task list in the CheatSheet_09.py file on the
server.

« Try to finish as many tasks as possible!

	Slide 1
	Slide 2: Python Programming
	Slide 3: Content
	Slide 4: Python Programming 2025/26 – Session 9
	Slide 5: Python Programming 2025/26 – Session 9
	Slide 6: Python Programming 2025/26 – Session 9
	Slide 7: Python Programming 2025/26 – Session 9
	Slide 8: Python Programming 2025/26 – Session 7
	Slide 9: Python Programming 2025/26 – Session 7
	Slide 10: Python Programming 2025/26 – Session 7
	Slide 11: Python Programming 2025/26 – Session 7
	Slide 12: Python Programming 2025/26 – Session 7
	Slide 13: Python Programming 2025/26 – Session 8
	Slide 14: Python Programming 2025/26 – Session 8
	Slide 15: Python Programming 2025/26 – Session 8
	Slide 16: Python Programming 2025/26 – Session 8
	Slide 17: Python Programming 2025/26 – Session 8
	Slide 18: Python Programming 2025/26 – Session 8
	Slide 19: Python Programming 2025/26 – Session 8
	Slide 20: Python Programming 2025/26 – Session 8
	Slide 21: Python Programming 2025/26 – Session 8
	Slide 22: Python Programming 2025/26 – Session 9
	Slide 23: Python Programming 2025/26 – Session 9
	Slide 24: Python Programming 2025/26 – Session 9
	Slide 25: Python Programming 2025/26 – Session 9
	Slide 26: Python Programming 2025/26 – Session 9
	Slide 27: Python Programming 2025/26 – Session 9
	Slide 28: Python Programming 2025/26 – Session 9
	Slide 29: Python Programming 2025/26 – Session 9
	Slide 30: Python Programming 2025/26 – Session 9
	Slide 31: Python Programming 2025/26 – Session 9
	Slide 32: Python Programming 2025/26 – Session 9
	Slide 33: Python Programming 2025/26 – Session 9
	Slide 34: Python Programming 2025/26 – Session 9
	Slide 35: Python Programming 2025/26 – Session 9
	Slide 36: Python Programming 2025/26 – Session 9
	Slide 37: Python Programming 2025/26 – Session 9
	Slide 38: Python Programming 2025/26 – Session 9
	Slide 39: Python Programming 2025/26 – Session 9
	Slide 40: Python Programming 2025/26 – Session 9
	Slide 41: Python Programming 2025/26 – Session 9
	Slide 42: Python Programming 2025/26 – Session 9
	Slide 43: Python Programming 2025/26 – Session 9
	Slide 44: Python Programming 2025/26 – Session 9
	Slide 45: Python Programming 2025/26 – Session 9
	Slide 46: Python Programming 2025/26 – Session 9
	Slide 47: Python Programming 2025/26 – Session 9
	Slide 48: Python Programming 2025/26 – Session 9
	Slide 49: Python Programming 2025/26 – Session 9
	Slide 50: Python Programming 2025/26 – Session 9
	Slide 51: Python Programming 2025/26 – Session 9
	Slide 52: Python Programming 2025/26 – Session 9
	Slide 53: Python Programming 2025/26 – Session 9
	Slide 54: Python Programming 2025/26 – Session 9
	Slide 55: Python Programming 2025/26 – Session 9
	Slide 56: Python Programming 2025/26 – Session 9
	Slide 57: Python Programming 2025/26 – Session 9
	Slide 58: Python Programming 2025/26 – Session 9
	Slide 59: Python Programming 2025/26 – Session 9
	Slide 60: Python Programming 2025/26 – Session 9
	Slide 61: Python Programming 2025/26 – Session 9
	Slide 62: Python Programming 2025/26 – Session 9
	Slide 63: Python Programming 2025/26 – Session 9
	Slide 64: Python Programming 2025/26 – Session 9

