
Download the cheat sheets and slides from here

t-l.earth

2025/26

Session 09

Python Programming

Tom Lotz (tom.lotz@outlook.com)

Python语言程序设计

Content

Brain Activation + Review

01 Imports and Modules

02 Reading and Writing Files

03 Exceptions and Safe Programs

04 Exercises

Python Programming 2025/26 – Session 9

Brain Activation

Python Programming 2025/26 – Session 9

Brain Activation

Function and Loop

Python Programming 2025/26 – Session 9

Brain Activation

Simple Dictionary

Python Programming 2025/26 – Session 9

Review

Python Programming 2025/26 – Session 7

Modeling the Real World

• In OOP, we describe things — not just actions. Each object in

code mirrors an object in the real world.

• Concepts:

• Class: the blueprint (defines what all objects of that kind

know and do)

• Object (instance): one specific example of that class

• Attributes: data values inside each object

• Methods: actions that object can perform

The Core Idea of Object-Oriented Programming (OOP)

Python Programming 2025/26 – Session 7

Introduction to Classes and Objects

• class keyword starts a class definition.

• __init__() initializes new objects.

• self refers to this particular instance.

Defining a Class

Python Programming 2025/26 – Session 7

Introduction to Classes and Objects

• We can create instances of the Dog class by calling it.

• Python calls __init__() automatically.

• my_dog is now an object with data inside.

Creating an Object

Python Programming 2025/26 – Session 7

Introduction to Classes and Objects

• We can add methods to a class.

• Each method must include self.

Adding Behavior (Methods)

Python Programming 2025/26 – Session 7

Introduction to Classes and Objects

• The methods of the instance are called in this way:

Using Methods

Python Programming 2025/26 – Session 8

Inheritance

• Sometimes we have several classes that share the same structure

or behavior. Instead of rewriting code, we can reuse it.

• Example:

• Vehicle → common properties: make, model, year.

• ElectricVehicle → adds battery or charging behavior.

• Inheritance saves time and avoids duplication.

Why Inheritance?

Python Programming 2025/26 – Session 8

Inheritance

• Start with a general class.

The Parent Class

Python Programming 2025/26 – Session 8

Inheritance

• A subclass inherits from the parent.

• super() calls the parent’s __init__() to reuse setup code. Add only

what’s specific to this subclass.

The Child Class

Python Programming 2025/26 – Session 8

Inheritance

• A subclass inherits from the parent.

• super() calls the parent’s __init__() to reuse setup code. Add only

what’s specific to this subclass.

The Child Class

Python Programming 2025/26 – Session 8

Inheritance

• Child classes automatically get all methods from the parent.

Using Inherited Methods

Python Programming 2025/26 – Session 8

Inheritance

• A child class can redefine a parent’s method.

Overriding Methods

Python Programming 2025/26 – Session 8

Composition and Object Interaction

• We define the contained class first.

The Contained Class

Python Programming 2025/26 – Session 8

Composition and Object Interaction

• Include a class as an attribute inside another.

The Container Class

Python Programming 2025/26 – Session 8

Composition and Object Interaction

• Include a class as an attribute inside another.

The Container Class

Python Programming 2025/26 – Session 9

Imports and Modules

Python Programming 2025/26 – Session 9

Imports and Modules

• Large programs become messy if everything is in one file.

• Modules allow you to:

• Separate logic cleanly

• Reuse classes/functions across files

• Avoid repetition

Why Modules?

Python Programming 2025/26 – Session 9

Imports and Modules

• Example idea:

• car.py → contains Car class

• my_car.py → imports and uses Car

• Modules = clean, organized, reusable code.

Why Modules?

Python Programming 2025/26 – Session 9

Imports and Modules

• A module is simply a .py file that Python can import.

A Module in Python

Python Programming 2025/26 – Session 9

Imports and Modules

• A module is simply a .py file that Python can import.

Importing a Single Class

Python Programming 2025/26 – Session 9

Imports and Modules

• A module is simply a .py file that Python can import.

Importing a Single Class

Python Programming 2025/26 – Session 9

Imports and Modules

• Create two files:

• tools.py

• main.py

• In tools.py: write a function hello() that prints a greeting. In

main.py: import and call hello().

Mini Task 1

Python Programming 2025/26 – Session 9

Imports and Modules

• A single module may store several related classes.

Importing Multiple Classes

Python Programming 2025/26 – Session 9

Imports and Modules

• A single module may store several related classes.

Importing Multiple Classes

Python Programming 2025/26 – Session 9

Imports and Modules

• Use this when you want clarity or to avoid name conflicts.

Importing the Entire Module

Python Programming 2025/26 – Session 9

Imports and Modules

• Use this when you want clarity or to avoid name conflicts.

Importing the Entire Module

Python Programming 2025/26 – Session 9

Imports and Modules

• Create a real module and use it:

• Make a file math_tools.py with two functions: add(a, b) and

multiply(a, b).

• In main.py, import the module.

• Let the user enter two numbers and print the sum and product.

Mini Task 2

Python Programming 2025/26 – Session 9

Imports and Modules

• Modules can import each other (inheritance in this example).

Modules Importing Modules

Python Programming 2025/26 – Session 9

Imports and Modules

• Shorten long names:

• Or alias entire modules:

Using Aliases

Python Programming 2025/26 – Session 9

Imports and Modules

• Modules structure programs into clean files.

• Different import styles offer flexibility.

• Aliases improve readability.

• Modules can import each other.

Wrap-up

Python Programming 2025/26 – Session 9

Reading and Writing Files

Python Programming 2025/26 – Session 9

Reading and Writing Files

• Programs become more useful when they can:

• Load data from disk

• Save user progress or results

• Process text, logs, CSV files

• Examples: reading weather data, saving notes, storing game

scores.

Why Work With Files?

Python Programming 2025/26 – Session 9

Reading and Writing Files

• Use Path.read_text() to load a file.

• Reads the entire file as one string.

Reading a File (Basic)

Python Programming 2025/26 – Session 9

Reading and Writing Files

• Use Path.read_text() to load a file, then remove whitespaces and

split into lines.

Stripping Whitespace, splitting lines

Python Programming 2025/26 – Session 9

Reading and Writing Files

• Download the file notes.txt with three lines of text. Write a

script to:

• Read the file

• Strip trailing whitespace

• Print each line separately after using .splitlines() (hint: you

need a loop)

Mini Task 3

Python Programming 2025/26 – Session 9

Reading and Writing Files

• Use write_text() to create or overwrite a file.

• This creates the file if it doesn’t exist.

Writing to a File

Python Programming 2025/26 – Session 9

Reading and Writing Files

• To write multiple lines, build a string with newlines:

Appending Multiple Lines

Python Programming 2025/26 – Session 9

Reading and Writing Files

• Write a script that:

• Asks the user for three sentences (hint: input())

• Saves all three into sentences.txt, each on its own line

Mini Task 4

Python Programming 2025/26 – Session 9

Reading and Writing Files

• JSON = JavaScript Object Notation

• Text format for structured data

• Works well with Python dictionaries and lists

• Easy to save to and read from files

• Useful for:

• App settings

• User preferences

• Small data files exchanged between programs

What Is JSON?

Python Programming 2025/26 – Session 9

Reading and Writing Files

• Example: language + theme settings.

Storing a Simple Settings Dict

Python Programming 2025/26 – Session 9

Reading and Writing Files

• Read the file, then convert JSON → Python Dictionary.

Loading Settings Back

Python Programming 2025/26 – Session 9

Reading and Writing Files

• Create a small user profile dictionary:

• name

• age

• country

• Steps:

• Store it into user_profile.json using json.dumps() and

write_text().

• In a new script, read it back and print a nice sentence:

• Example: Tom from Germany is 90 years old.

Mini Task 5

Python Programming 2025/26 – Session 9

Reading and Writing Files

• Path.read_text() loads file content.

• Path.write_text() writes or replaces content.

• .rstrip() removes unneeded characters.

• .splitlines() helps process files line by line.

• JSON is a text format for structured data (dicts, lists, etc.).

• json.dumps() Python object → JSON string.

• json.loads() JSON string → Python object.

Wrap-up

Python Programming 2025/26 – Session 9

Exceptions and Safe Programs

Python Programming 2025/26 – Session 9

Exceptions and Safe Programs

• An exception is an error that stops normal program execution.

• Examples:

• Dividing by zero

• Converting text to a number

• Opening a missing file

• Without handling, the program crashes and prints a traceback.

What Is an Exception?

Python Programming 2025/26 – Session 9

Exceptions and Safe Programs

Simple Exception Example

Python Programming 2025/26 – Session 9

Exceptions and Safe Programs

• Use try for risky code. Use except to catch the error.

• The program continues running without crashing.

Basic try/except Structure

Python Programming 2025/26 – Session 9

Exceptions and Safe Programs

• Write a script that:

• Asks the user for two numbers

• Tries to divide them

• Catches ZeroDivisionError and prints a friendly message

Mini Task 6

Python Programming 2025/26 – Session 9

Exceptions and Safe Programs

• Use else when the try block succeeds.

• Keeps the success logic separate and clean.

The else Block

Python Programming 2025/26 – Session 9

Exceptions and Safe Programs

• Converting text to a number may fail.

• Prevents crashes from invalid input.

Handling Bad User Input

Python Programming 2025/26 – Session 9

Exceptions and Safe Programs

• Create a simple calculator that:

• Prompts for two numbers

• Uses try/except to catch ValueError

• Prints the sum if inputs are valid

Mini Task 7

Python Programming 2025/26 – Session 9

Exceptions and Safe Programs

• Trying to open a missing file raises FileNotFoundError.

File Errors: Missing Files

Python Programming 2025/26 – Session 9

Exceptions and Safe Programs

• Separate successful read logic.

Using else with File Reads

Python Programming 2025/26 – Session 9

Exceptions and Safe Programs

• Write a script that:

• Asks for a filename

• Tries to open it

• If missing → prints a friendly error

• If found → prints the content

Mini Task 8

Python Programming 2025/26 – Session 9

Exceptions and Safe Programs

• You can catch different errors separately.

Chaining Multiple Exceptions

Python Programming 2025/26 – Session 9

Exceptions and Safe Programs

• Exceptions prevent crashes and improve user experience.

• try/except handles errors.

• else keeps clean success logic.

• FileNotFoundError and ValueError are common in real programs.

• Use multiple except blocks for different problems.

Wrap-up

Python Programming 2025/26 – Session 9

Exercises

Python Programming 2025/26 – Session 9

Exercises

• We are building a project that grows with each task.

• You can find the task list in the CheatSheet_09.py file on the

server.

• Try to finish as many tasks as possible!

Exercise

	Slide 1
	Slide 2: Python Programming
	Slide 3: Content
	Slide 4: Python Programming 2025/26 – Session 9
	Slide 5: Python Programming 2025/26 – Session 9
	Slide 6: Python Programming 2025/26 – Session 9
	Slide 7: Python Programming 2025/26 – Session 9
	Slide 8: Python Programming 2025/26 – Session 7
	Slide 9: Python Programming 2025/26 – Session 7
	Slide 10: Python Programming 2025/26 – Session 7
	Slide 11: Python Programming 2025/26 – Session 7
	Slide 12: Python Programming 2025/26 – Session 7
	Slide 13: Python Programming 2025/26 – Session 8
	Slide 14: Python Programming 2025/26 – Session 8
	Slide 15: Python Programming 2025/26 – Session 8
	Slide 16: Python Programming 2025/26 – Session 8
	Slide 17: Python Programming 2025/26 – Session 8
	Slide 18: Python Programming 2025/26 – Session 8
	Slide 19: Python Programming 2025/26 – Session 8
	Slide 20: Python Programming 2025/26 – Session 8
	Slide 21: Python Programming 2025/26 – Session 8
	Slide 22: Python Programming 2025/26 – Session 9
	Slide 23: Python Programming 2025/26 – Session 9
	Slide 24: Python Programming 2025/26 – Session 9
	Slide 25: Python Programming 2025/26 – Session 9
	Slide 26: Python Programming 2025/26 – Session 9
	Slide 27: Python Programming 2025/26 – Session 9
	Slide 28: Python Programming 2025/26 – Session 9
	Slide 29: Python Programming 2025/26 – Session 9
	Slide 30: Python Programming 2025/26 – Session 9
	Slide 31: Python Programming 2025/26 – Session 9
	Slide 32: Python Programming 2025/26 – Session 9
	Slide 33: Python Programming 2025/26 – Session 9
	Slide 34: Python Programming 2025/26 – Session 9
	Slide 35: Python Programming 2025/26 – Session 9
	Slide 36: Python Programming 2025/26 – Session 9
	Slide 37: Python Programming 2025/26 – Session 9
	Slide 38: Python Programming 2025/26 – Session 9
	Slide 39: Python Programming 2025/26 – Session 9
	Slide 40: Python Programming 2025/26 – Session 9
	Slide 41: Python Programming 2025/26 – Session 9
	Slide 42: Python Programming 2025/26 – Session 9
	Slide 43: Python Programming 2025/26 – Session 9
	Slide 44: Python Programming 2025/26 – Session 9
	Slide 45: Python Programming 2025/26 – Session 9
	Slide 46: Python Programming 2025/26 – Session 9
	Slide 47: Python Programming 2025/26 – Session 9
	Slide 48: Python Programming 2025/26 – Session 9
	Slide 49: Python Programming 2025/26 – Session 9
	Slide 50: Python Programming 2025/26 – Session 9
	Slide 51: Python Programming 2025/26 – Session 9
	Slide 52: Python Programming 2025/26 – Session 9
	Slide 53: Python Programming 2025/26 – Session 9
	Slide 54: Python Programming 2025/26 – Session 9
	Slide 55: Python Programming 2025/26 – Session 9
	Slide 56: Python Programming 2025/26 – Session 9
	Slide 57: Python Programming 2025/26 – Session 9
	Slide 58: Python Programming 2025/26 – Session 9
	Slide 59: Python Programming 2025/26 – Session 9
	Slide 60: Python Programming 2025/26 – Session 9
	Slide 61: Python Programming 2025/26 – Session 9
	Slide 62: Python Programming 2025/26 – Session 9
	Slide 63: Python Programming 2025/26 – Session 9
	Slide 64: Python Programming 2025/26 – Session 9

