Download the cheat sheets and slides from here

t-l.earth

L4
Tom Lotz Index of /teaching
Jinling Institute of Technology (Nanjing, China)
Research on Microplastics, Hydrology, and Machine Learning Name Last modified Size Description

Parent Directorv

= python2025_26/ 2025-09-16 09:54

Apache/2 4.29 (Ubuntu) Server at t-l.earth Port 443

PythoniG T2 RFig T
Python Programming
2025/26

@

Session 08

Tom Lotz (tom.lotz@outlook.com)

Content

Brain Activation + Review
01 Inheritance
02 Composition and Object Interaction

03 Exercises

Python Programming 2025/26 - Session 8

Brain Activation

Python Programming 2025/26 - Session 8
Brain Activation

Basic Function

« Write a function that greets a user by name.

def greet(name):
print(f"Hello, {name}!")

greet("Ali")

Python Programming 2025/26 - Session 8
Brain Activation

Working with Lists

* Create a list of three favorite fruits and print each one in a loop.

fruits = ["apple", "banana", "cherry"]
for fruit in fruits:
print (fruit)

Python Programming 2025/26 - Session 8
Brain Activation

Using Dictionaries

« Create a small dictionary representing a student and print a
message using its values.

student = {"name": "Lina", "major": "Software Engineering"}
print(f"{student['name']} studies {student['major']}")

Python Programming 2025/26 - Session 8
Brain Activation

Conditionals & Input

* Ask the user for a number and print whether it’s even or odd.

number = int(input("Enter a number: "))
if number % 2 ==

print("Even number!")
else:

print("0dd number!")

Python Programming 2025/26 - Session 8
Brain Activation

Simple Function Challenge

« Write a function that takes two numbers and returns the larger
one.

Python Programming 2025/26 - Session 8

Review

Python Programming 2025/26 - Session 8
Python Indentation

Python Indentation

Python Programming 2025/26 - Session 8
Python Indentation

Python Indentation

 Script flow logic in Python is determined by indentation

* Indent can be done by spaces or tabs (must always be the same
number)

Python Programming 2025/26 - Session 8
Python Indentation

Python Indentation

print("Hello world!")

print("Hello world again!")

Python Programming 2025/26 - Session 8
Python Indentation

Python Indentation

print("Hello world!")

if 2 > 1:
print("Hello world again!")

Python Programming 2025/26 - Session 8
Python Indentation

Python Indentation

if True:
: fy R O -
print("Hello world again!")
print("Goodbye world!")

Python Programming 2025/26 - Session 8
Python Indentation

Python Indentation

class Student:
def (self,name,age):
self.name=name
self.age=age

def print_info(self):
print("Name:",self.name, "Age:",6self.age)

Python Programming 2025/26 - Session 8
Python Indentation

Python Indentation

class Student:
def (self,name,age):
self.name=name
self.age=age

def print_info(self):
print("Name:",self.name, "Age:",6self.age)

my_student = Student("John",20)

Python Programming 2025/26 - Session 8
Python Indentation

Python Indentation

class Student:
def (self,name,age):
self.name=name
self.age=age

def print_info(self):
print("Name:",self.name, "Age:",self.age)

my_student = Student("John",20)

Python Programming 2025/26 - Session 8
Python Indentation

Python Indentation

class Student:
def (self,name,age):
self.name=name
self.age=age

def print_info(self):
print("Name:",self.name, "Age:",self.age)

my_student = Student("John",20)

Python Programming 2025/26 - Session 7
Modeling the Real World

From Code to Models

* Programming is not just writing instructions; it’s building
. We use variables and lists for data, but when data and
behavior belong together, we need something more structured.
« Example:

« Astudent has a name, major, and GPA.

« A bank account has an owner, balance, and actions (deposit,
withdraw).

« This combination of data + actions is what a represents.

Python Programming 2025/26 - Session 7
Modeling the Real World

The Core Idea of Object-Oriented Programming (OOP)

* In OOP, we describe things — not just actions. Each object in
code mirrors an object in the real world.

« Concepts:

: the blueprint (defines what all objects of that kind
know and do)

(instance): one specific example of that class
: data values inside each object

: actions that object can perform

Python Programming 2025/26 - Session 7
Modeling the Real World

Thinking Like a Designer

« When designing a class:
« |dentify the entity (noun) you want to represent.
« Decide which details are important (attributes).

« Define the actions (methods) that belong to it.

« Example: Modeling a book. What do we need?

Python Programming 2025/26 - Session 7
Introduction to Classes and Objects

Defining a Class

keyword starts a class definition.
initializes new objects.

refers to this particular instance.

class Dog:
def (self, name, age):
self.name = name
self.age = age

Python Programming 2025/26 - Session 7
Introduction to Classes and Objects

Creating an Object

* We can create instances of the Dog class by calling it.

my_dog = Dog('Willie', 6)

« Python calls __init__() automatically.

« my_dog is now an object with data inside.

Python Programming 2025/26 - Session 7
Introduction to Classes and Objects

Adding Behavior (Methods)

 We can add methods to a class.
class Dog:
def (self, name, age):
self.name = name
self.age = age

def sit(self):
print(f"{self.name} is now sitting.")

def roll_over(self):
print(f"{self.name} rolled over!")

« Each method must include self.

Python Programming 2025/26 - Session 7
Introduction to Classes and Objects

Using Methods

* The methods of the instance are called in this way:

my_dog = Dog('Willie', 6)
my_dog.sit() # Willie is now sitting.
my_dog.roll_over() # Willie rolled over!

Python Programming 2025/26 - Session 7
Introduction to Classes and Objects

Multiple Instances

* Once a class has been defined, we can create as many instances
as we want.

my_dog = Dog('Willie', 6)
your_dog = Dog('Lucy', 3)

my_dog.sit() # Willie is now sitting.
your_dog.roll_over() # Lucy rolled over!

Python Programming 2025/26 - Session 7
Working with Attributes and Methods

Adding Default Attributes

« Every student starts with 0 credits

class Student:
def (self, name, major):
self.name = name
self.major = major
0 # default value

self.credits

Python Programming 2025/26 - Session 7
Working with Attributes and Methods

Modifying Attributes Directly

* We can change values manually:

studentl = Student('James', 2)
studentl.credits = 20
studentl.show_info() # James studies 2 and has 20 credits.

* This works, but there is no control over the data added for the
attribute (negative values, strings, ...).

Python Programming 2025/26 - Session 7
Working with Attributes and Methods

Updating Attributes Safely

« Better to add a method that updates credits but protects against
invalid data.

def update_credits(self, new_value):
if new_value >= 0:
self.credits = new_value
else:
print("Credits cannot be negative!")

studentl.update_credits(-20)

Python Programming 2025/26 - Session 8

Inheritance

Python Programming 2025/26 - Session 8
Inheritance

Why Inheritance?

« Sometimes we have several classes that share the same structure
or behavior. Instead of rewriting code, we can reuse it.

« Example:
* Vehicle — common properties: make, model, year.
 ElectricVehicle — adds battery or charging behavior.

 Inheritance saves time and avoids duplication.

Python Programming 2025/26 - Session 8
Inheritance

The Parent Class

 Start with a general class.

class Vehicle:
def (self, make, model, year):
self.make = make
self.model = model
self.year = year

def describe(self):
print(f"{self.year} {self.make} {self.model}l")

Python Programming 2025/26 - Session 8
Inheritance

The Child Class

« Asubclass inherits from the parent.

Child class
class ElectricVehicle(Vehicle):
def (self, make, model, year, battery_capacity):
super().__init__(make, model, year)
self.battery_capacity = battery_capacity

 super() calls the parent’s __init__() to reuse setup code. Add only
what’s specific to this subclass.

Python Programming 2025/26 - Session 8
Inheritance

The Child Class

« Asubclass inherits from the parent.

Child class
class ElectricVehicle(Vehicle):
def (self, make, model, year, battery_capacity):
super().__init__(make, model, year)
self.battery_capacity = battery_capacity

my_ev = ElectricVehicle("whatever", "Stellaria", "1999", 20000)

my_ev.describe()

Python Programming 2025/26 - Session 8
Inheritance

Mini Task 1

* Extend Vehicle to create GasolineVehicle with one extra attribute
tank_size (you can copy the Vehicle class from
CheatSheet_08.py).

« Use super() to initialize shared attributes.

Python Programming 2025/26 - Session 8
Inheritance

Using Inherited Methods

» Child classes automatically get all methods from the parent.

Child class
class ElectricVehicle(Vehicle):
def (self, make, model, year, battery_capacity):
super().__init__(make, model, year)
self.battery_capacity = battery_capacity

my_ev = ElectricVehicle("whatever", "Stellaria", "1999", 20000)

my_ev.describe()

Python Programming 2025/26 - Session 8
Inheritance

Overriding Methods

» A child class can redefine a parent’s method.

Child class with method overwrite
class ElectricVehicle(Vehicle):
def (self, make, model, year, battery_capacity):
super(). (make, model, year)
self.battery_capacity = battery_capacity

def describe(self):
print(f"{self.year} {self.make} {self.model} with {self.battery_capacity} kWh battery")

Python Programming 2025/26 - Session 8
Inheritance

Mini Task 2

* In GasolineVehicle, override describe() so it also shows tank size.

* Create one Vehicle, one ElectricVehicle (copy ElectricVehicle
from the CheatSheet), and one GasolineVehicle.

 Call describe() on each.

Python Programming 2025/26 - Session 8
Inheritance

Mini Task 3

« Add a method charge() to ElectricVehicle and refuel() to
GasolineVehicle.

 Call both on respective objects.

Python Programming 2025/26 - Session 8
Inheritance

Common Mistakes to Avoid

Forgetting super().__init__() — attributes from parent won’t
exist.

Misalighed indentation — methods not actually inside the class.

Reusing parent names incorrectly — shadowing variables.

Always check that your subclass runs the parent’s setup first.

Python Programming 2025/26 - Session 8
Inheritance

Wrap-up

* Inheritance connects related classes.
 super() lets you reuse parent initialization.

* Overriding allows customization.

Python Programming 2025/26 - Session 8

Composition and Object Interaction

Python Programming 2025/26 - Session 8
Composition and Object Interaction

Why Composition?

* Not everything fits into inheritance. Sometimes one class should
use another, not become another.

« Example: A Car has a Battery — not the same thing.

« Composition = building larger structures from smaller classes.

Python Programming 2025/26 - Session 8
Composition and Object Interaction

The Contained Class

« We define the contained class first.

class Battery:
def (self, capacity):
self.capacity = capacity

def describe_battery(self):
print(f"Battery capacity: {self.capacity} kWh")

Python Programming 2025/26 - Session 8
Composition and Object Interaction

The Container Class

* Include a class as an attribute inside another.

class ElectricVehicle:
def (self, make, model, year, capacity):
self.make = make
self.model = model

self.year = year
self.battery = Battery(capacity) #here is the contained class

def describe(self):
print(f"{self.year} {self.make} {self.model}l")
self.battery.describe_battery()

e

Python Programming 2025/26 - Session 8
Composition and Object Interaction

The Container Class

* Include a class as an attribute inside another.

class ElectricVehicle:
def (self, make, model, year, capacity):
self.make = make
self.model = model

self.year = year
self.battery = Battery(capacity) #here is the contained class

def describe(self):
print(f"{self.year} {self.make} {self.model}l")
self.battery.describe_battery()

e

Python Programming 2025/26 - Session 8
Composition and Object Interaction

The Container Class

* Include a class as an attribute inside another.

class ElectricVehicle:
def (self, make, model, year, capacity):
self.make = make
self.model = model

self.year = year
self.battery = Battery(capacity) #here is the contained class

def describe(self):
print(f"{self.year} {self.make} {self.model}l")
self.battery.describe_battery()

e

Python Programming 2025/26 - Session 8
Composition and Object Interaction

Mini Task 4

» Use your existing ElectricVehicle class and add a Battery class to
it.

« Each EV should automatically create a Battery when
initialized.

« Add a method show_range() inside Battery that prints the
driving range.

Python Programming 2025/26 - Session 8
Composition and Object Interaction

Object Interaction

« Objects can communicate by calling each other’s methods.
Example:

ev = ElectricVehicle('Tesla', 'Model 3', 2024, 75)
ev.battery.describe_battery()

Python Programming 2025/26 - Session 8
Composition and Object Interaction

Extending Composition

« Composition allows complex relationships:
* A Zoo has Animals.

« ALibrary has Books.

* A School has Students and Teachers. Each object keeps its own
logic but can interact with others.

Python Programming 2025/26 - Session 8
Composition and Object Interaction

Mini Task 5

* Create a new class Fleet that stores multiple vehicles.

« Use show_all() of your Fleet object.

class Fleet:
« Help: def (self):
self.vehicles = []

def add_vehicle(self, vehicle):
self.vehicles.append(vehicle)

def show_all(self):
for v in self.vehicles:
v.describe()

Python Programming 2025/26 - Session 8
Composition and Object Interaction

Common Mistakes

Forgetting to initialize the contained class
(e.g., self.battery = Battery(capacity)).

Trying to access attributes that belong to another object directly.

Forgetting to prefix with the correct object (self.battery.range,
not just range).

« Always use dot notation to move through layers.

Python Programming 2025/26 - Session 8
Composition and Object Interaction

Wrap-up

« Composition = “has-a” relationship.
« Enables objects to collaborate.

 Builds modular, realistic programs.

Python Programming 2025/26 - Session 8

Exercises

Python Programming 2025/26 - Session 8
Exercises

/00

* We are building a zoo that grows with each task.

* You can find the task list in the CheatSheet_08.py file on the
server.

* Try to finish as many tasks as possible!

