Download the cheat sheets and slides from here

t-l.earth

Tom Lotz Index of / teaChlllg
Jinling Institute of Technology (Nanjing, China)
Research on Microplastics, Hydrology, and Machine Learning Name Last modified Size Description

Apache/2 4.29 (Ubuntu) Server at t-l.earth Port 443

Pythonif & # fr ix if
Python Programming
2025/26

o

Session 07

Tom Lotz (tom.lotz@outlook.com)

01
02
03
04

Content

Brain Activation + Review

Modeling the Real World
Introduction to Classes and Objects
Working with Attributes and Methods

Exercises

Python Programming 2025/26 - Session 7

Brain Activation

Python Programming 2025/26 - Session 7
Brain Activation

Greeting Function
« Write a simple function that prints a greeting.

def greet_user(name):
print(f"Hello, {name}!")

Python Programming 2025/26 - Session 7
Brain Activation

Dictionary Review

* Make a small dictionary representing a car.

* Print the make and model in one line.

car = {"make": "Toyota", "model": "Corolla", "year": 2020}

Python Programming 2025/26 - Session 7
Brain Activation

Looping Through a Dictionary

« Loop through all key-value pairs in your car dictionary.

for key, value in car.items():
print(key, value)

Python Programming 2025/26 - Session 7
Brain Activation

Modify a Dictionary
« Add a new key and value.

car["color"] = "blue"
print(car)

Python Programming 2025/26 - Session 7

Review

Python Programming 2025/26 - Session 6
Defining and Calling Functions

What Is a Function?

« A function is a named block of code that performs one task.
* We use it to:
» Reuse code instead of writing the same thing many times.
« Keep programs organized and readable.

« Example idea: a machine that does one job when you press its
button.

machine()

Python Programming 2025/26 - Session 6
Defining and Calling Functions

Defining a Function

Basic syntax:
def greet_user(): 1

print("Hello!")

introduces a function.

The name () describes its job.

The colon starts an indented block (function body).

To run it: you must call it. Before that, nothing happens.

greet_user()

Python Programming 2025/26 - Session 6
Defining and Calling Functions

Adding a Parameter

* Functions can accept input values.

def greet_user(name):
print("Hello, ", name)

greet_user("Lina")
greet_user("Maxi")

Python Programming 2025/26 - Session 6
Defining and Calling Functions

Arguments vs Parameters

« Parameter: variable name inside the function definition.
« Argument: actual value passed when calling the function.

« Example:

def greet_user(name): #name = Parameter
print("Hello, ", name)

greet_user("Lina") # "Lina" = Argument

Python Programming 2025/26 - Session 6
Defining and Calling Functions

Functions with Multiple Parameters

* You can pass more than one piece of information. Functions can
be desighed with any humber of parameters.

def describe_pet(animal, name):
print("I have a ", animal, " named ",name)

describe_pet("dog", "Max")

Python Programming 2025/26 - Session 6
Defining and Calling Functions

Order matters!

« The arguments must be provided in the same order as the
function definition expects them.

describe_pet("dog", "Max")
describe_pet("Max", "dog")

I have a dog named Max
I have a Max named dog

Python Programming 2025/26 - Session 6
Passing Information to Functions

Positional Arguments

« The arguments we have used so far are called positional
arguments.

def describe_pet(animal, name):
print("I have a ", animal, " named ",name)

describe_pet("dog", "Max")

 The order is absolute!

Python Programming 2025/26 - Session 6
Passing Information to Functions

Keyword Arguments

* The alternative is to use keywords (argument names) when
calling the function.

def describe_pet(animal, name):
print("I have a ", animal, " named ",name)

describe_pet(animal="dog", name="Max")
describe_pet(name="Max", animal="dog")

I have a dog named Max
I have a dog named Max

Python Programming 2025/26 - Session 6
Passing Information to Functions

Default Values

* You can provide default values to parameters.

 In the definition, default parameters come after required
parameters.

def describe_pet(name, animal = "dog"):
print("I have a ", animal, " named ",name)

describe_pet(name="Max", animal="dog") I have a dog named Hax

describe_pet(name="Max") I have a dog named Max

describe_pet(name="Max", animal="cat") I have a cat named Max

Python Programming 2025/26 - Session 6
Passing Information to Functions

Optional Values

* We can use an empty string “” or to make an argument
optional.

def print_full_name(first, last, middle=""):
if middle:
print(first, middle, ",", last)
else:
print(first, ",", last)

print_full_name("John", "Doe") # John , Doe
print_full_name("John", "Doe", "Lee") # John Lee , Doe

e

Python Programming 2025/26 - Session 6
Returning Values

Capturing Return Values

* We can capture the return value of a function with an
assignment.

def add(a, b):
return a + b

c = add(1, 2)

print(c)

Python Programming 2025/26 - Session 6
Returning Values

Returning from Conditional Logic

 Functions can decide what value to return based on conditions.

def pos_or_neg(number):
if number < 0:
return "Negative"
elif number > 0O:
return "Positive"

r = pos_or_neg(3)
print(r) # Positive

Python Programming 2025/26 - Session 7

Modeling the Real World

Python Programming 2025/26 - Session 7
Modeling the Real World

From Code to Models

« Programming is not just writing instructions; it’s building
. We use variables and lists for data, but when data and
behavior belong together, we need something more structured.

« Example:
» A student has a name, major, and GPA.

* A bank account has an owner, balance, and actions (deposit,
withdraw).

» This combination of data + actions is what a represents.

Python Programming 2025/26 - Session 7
Modeling the Real World

Why Not Just Use Dictionaries?

 Dictionaries can store information, but they cannot do anything
by themselves.

 |If we want to update credits or calculate GPA, we need separate
functions.

student = {"name": "Ali", "major": "Software Engineering", "credits": 30}

Python Programming 2025/26 - Session 7
Modeling the Real World

The Core Idea of Object-Oriented Programming (OOP)

* In OOP, we describe things — not just actions. Each object in
code mirrors an object in the real world.

« Concepts:

: the blueprint (defines what all objects of that kind
know and do)

(instance): one specific example of that class
. data values inside each object

. actions that object can perform

Python Programming 2025/26 - Session 7
Modeling the Real World

Thinking Like a Designer

 When designing a class:
 |dentify the entity (noun) you want to represent.
» Decide which details are important (attributes).

» Define the actions (methods) that belong to it.

« Example: Modeling a book. What do we need?

Python Programming 2025/26 - Session 7
Modeling the Real World

Abstraction: Simplifying the Real World

« A class is not the real object; it’s a simplified version of it. You
choose only the details that matter for your program.

« Example: If modeling a car, you might include speed, fuel, and
drive(), but not color_of_seatbelt().

« Abstraction = ignore unnecessary details, focus on purpose.

Python Programming 2025/26 - Session 7
Modeling the Real World

Mini Task O

« Pick something familiar (phone, pet, course, or device). Write
down:

« 2-3 attributes (what it has)

« 2-3 actions (what it does)

Python Programming 2025/26 - Session 7

Introduction to Classes and Objects

Python Programming 2025/26 - Session 7
Introduction to Classes and Objects

What Is a Class?

« Aclass is a blueprint for creating objects.

|t defines what data (attributes) and actions (methods) the
objects have.

« Objects are called instances of that class.
« Example analogy:

 Class = recipe 8 — Instance = actual cake &

Python Programming 2025/26 - Session 7
Introduction to Classes and Objects

Defining a Class

keyword starts a class definition.
initializes new objects.

refers to this particular instance.

class Dog:
def (self, name, age):
seltf.name = name
selt.age = age

Python Programming 2025/26 - Session 7
Introduction to Classes and Objects

Mini Task 1

« Create your own class Student with:

« Attributes: name, major.

Python Programming 2025/26 - Session 7
Introduction to Classes and Objects

Creating an Object

* We can create instances of the Dog class by calling it.

my_dog = Dog('Willie', 6)

« Python calls __init__() automatically.

« my_dog is now an object with data inside.

Python Programming 2025/26 - Session 7
Introduction to Classes and Objects

Accessing attributes

« We can access the attributes of our instance:

print(my_dog.name) # Willie
print(my_dog.age) # 6

Python Programming 2025/26 - Session 7
Introduction to Classes and Objects

Adding Behavior (Methods)

« We can add methods to a class.
class Dog:

def (self, name, age):
self.name = name
self.age = age

def sit(self):
print(f"{self.name} is now sitting.")

def roll_over(self):
print(f"{self.name} rolled over!")

 Each method must include self.

Python Programming 2025/26 - Session 7
Introduction to Classes and Objects

Using Methods

* The methods of the instance are called in this way:

my_dog = Dog('Willie', 6)
my_dog.sit() # Willie is now sitting.
my_dog.roll_over() # Willie rolled over!

Python Programming 2025/26 - Session 7
Introduction to Classes and Objects

Mini Task 2

* Modify your class Student to contain:
« Attributes: name, major.
* Method: introduce() — prints a short intro.
« Example:

 "Hi, I’'m Lina, and | study Software Engineering.”

Python Programming 2025/26 - Session 7
Introduction to Classes and Objects

Multiple Instances

* Once a class has been defined, we can create as many instances
as we want.

my_dog = Dog('Willie', 6)
your_dog = Dog('Lucy', 3)

my_dog.sit() # Willie is now sitting.
your_dog.roll_over() # Lucy rolled over!

Python Programming 2025/26 - Session 7
Introduction to Classes and Objects

Mini Task 3

* Create several instances of your student class and call their
introduction method.

Python Programming 2025/26 - Session 7
Introduction to Classes and Objects

Wrap-up

Define a class using class.

Initialize data in

Access data and methods via notation.

Each instance is unique but shares behavior.

Python Programming 2025/26 - Session 7

Working with Attributes and Methods

Python Programming 2025/26 - Session 7
Working with Attributes and Methods

Adding Default Attributes

« Every student starts with 0 credits

class Student:
def (self, name, major):
self.name = name
self.major = major
8 # default value

self.credits

Python Programming 2025/26 - Session 7
Working with Attributes and Methods

Mini Task 4

« Add a default credits value to your class and add a method to
print all information.

class Student:
def (self, name, major):
self.name = name
self.major = major
self.credits = @ # default value

def show_info(self):
print(f"{self.name} studies {self.major} and has {self.credits} credits.")

Python Programming 2025/26 - Session 7
Working with Attributes and Methods

Modifying Attributes Directly

* We can change values manually:

studentl = Student('James', 2)
studentl.credits = 20
studentl.show_info() # James studies 2 and has 20 credits.

Python Programming 2025/26 - Session 7
Working with Attributes and Methods

Modifying Attributes Directly

* We can change values manually:

studentl = Student('James', 2)
studentl.credits = 20
studentl.show_info() # James studies 2 and has 20 credits.

« This works, but there is no control over the data added for the
attribute (negative values, strings, ...).

Python Programming 2025/26 - Session 7
Working with Attributes and Methods

Updating Attributes Safely

« Better to add a method that updates credits but protects against
invalid data.

def update_credits(self, new_value):
if new_value >= 0:
self.credits = new_value
else:
print("Credits cannot be negative!")

studentl.update_credits(-20)

Python Programming 2025/26 - Session 7
Working with Attributes and Methods

Updating Attributes Safely

« Better to add a method that updates credits but protects against
invalid data.

def update_credits(self, new_value):
if new_value >= 0:
self.credits = new_value
else:
print("Credits cannot be negative!")

studentl.update_credits(-20)

Python Programming 2025/26 - Session 7
Working with Attributes and Methods

Mini Task 5

« Add update_credits() and test it with positive and negative
numbers.

def update_credits(self, new_value):
if new_value >= 0:
self.credits = new_value
else:
print("Credits cannot be negative!")

Python Programming 2025/26 - Session 7
Working with Attributes and Methods

Incrementing Attribute Values

 Instead of replacing the value, we can increase it gradually.

def add_credits(self, amount):
if amount > 0O:
self.credits += amount # same as self.credits = self.credits + amount
else:
print("Amount must be positive!")

studentl.add_credits(5)

Python Programming 2025/26 - Session 7
Working with Attributes and Methods

Mini Task 6

« Add a method called change_credits(), that allows positive AND
negative values. Meanwhile, if self.credits is ever below 0 after
an update, set it to 0.

e Reminder:

def update_credits(self, new_value):
if new_value >= 0:
self.credits = new_value
else:

print("Credits cannot be negative!")

Python Programming 2025/26 - Session 7
Working with Attributes and Methods

Wrap-up

* We can change attributes directly, but that can be risky.

« Better to add a method to change attributes with a security
check.

Python Programming 2025/26 - Session 7

Exercises

Python Programming 2025/26 - Session 7
Exercises

Bank Account

 Build the class BankAccount that grows with each task.

* You can find the task list in the CheatSheet_07.py file on the
server.

« Try to finish as many tasks as possible!

	Slide 1
	Slide 2: Python Programming
	Slide 3: Content
	Slide 4: Python Programming 2025/26 – Session 7
	Slide 5: Python Programming 2025/26 – Session 7
	Slide 6: Python Programming 2025/26 – Session 7
	Slide 7: Python Programming 2025/26 – Session 7
	Slide 8: Python Programming 2025/26 – Session 7
	Slide 9: Python Programming 2025/26 – Session 7
	Slide 10: Python Programming 2025/26 – Session 6
	Slide 11: Python Programming 2025/26 – Session 6
	Slide 12: Python Programming 2025/26 – Session 6
	Slide 13: Python Programming 2025/26 – Session 6
	Slide 14: Python Programming 2025/26 – Session 6
	Slide 15: Python Programming 2025/26 – Session 6
	Slide 16: Python Programming 2025/26 – Session 6
	Slide 17: Python Programming 2025/26 – Session 6
	Slide 18: Python Programming 2025/26 – Session 6
	Slide 19: Python Programming 2025/26 – Session 6
	Slide 20: Python Programming 2025/26 – Session 6
	Slide 21: Python Programming 2025/26 – Session 6
	Slide 22: Python Programming 2025/26 – Session 7
	Slide 23: Python Programming 2025/26 – Session 7
	Slide 24: Python Programming 2025/26 – Session 7
	Slide 25: Python Programming 2025/26 – Session 7
	Slide 26: Python Programming 2025/26 – Session 7
	Slide 27: Python Programming 2025/26 – Session 7
	Slide 28: Python Programming 2025/26 – Session 7
	Slide 29: Python Programming 2025/26 – Session 7
	Slide 30: Python Programming 2025/26 – Session 7
	Slide 31: Python Programming 2025/26 – Session 7
	Slide 32: Python Programming 2025/26 – Session 7
	Slide 33: Python Programming 2025/26 – Session 7
	Slide 34: Python Programming 2025/26 – Session 7
	Slide 35: Python Programming 2025/26 – Session 7
	Slide 36: Python Programming 2025/26 – Session 7
	Slide 37: Python Programming 2025/26 – Session 7
	Slide 38: Python Programming 2025/26 – Session 7
	Slide 39: Python Programming 2025/26 – Session 7
	Slide 40: Python Programming 2025/26 – Session 7
	Slide 41: Python Programming 2025/26 – Session 7
	Slide 42: Python Programming 2025/26 – Session 7
	Slide 43: Python Programming 2025/26 – Session 7
	Slide 44: Python Programming 2025/26 – Session 7
	Slide 45: Python Programming 2025/26 – Session 7
	Slide 46: Python Programming 2025/26 – Session 7
	Slide 47: Python Programming 2025/26 – Session 7
	Slide 48: Python Programming 2025/26 – Session 7
	Slide 49: Python Programming 2025/26 – Session 7
	Slide 50: Python Programming 2025/26 – Session 7
	Slide 51: Python Programming 2025/26 – Session 7
	Slide 52: Python Programming 2025/26 – Session 7
	Slide 53: Python Programming 2025/26 – Session 7

