
Download the cheat sheets and slides from here

t-l.earth

2025/26

Session 06

Python Programming

Tom Lotz (tom.lotz@outlook.com)

Python语言程序设计

Content

Brain Activation + Review

01 Defining and Calling Functions

02 Passing Information to Functions

03 Returning Values

04 Passing Lists and Using *args / kwargs

05 Exercises

Python Programming 2025/26 – Session 6

Brain Activation

Python Programming 2025/26 – Session 6

Brain Activation

• Make a list of three cities, then print each one.

Loop Through a List

Python Programming 2025/26 – Session 6

Brain Activation

• Use an if statement to test each number in a list to see if it is

positive or negative and print the result.

Positive or Negative?

Python Programming 2025/26 – Session 6

Brain Activation

• Create a small dictionary describing one student.

Mini Dictionary Recap

Python Programming 2025/26 – Session 6

Review

Python Programming 2025/26 – Session 5

Discovering Dictionaries

• Lists: store items by position.

• Dictionaries: store items by name (key).

Why Dictionaries?

Python Programming 2025/26 – Session 5

Discovering Dictionaries

• A dictionary is wrapped in curly braces { }. Each key is connected

to a value with a colon :. Multiple pairs are separated by

commas.

• Keys: must be unique.

• Values: can be numbers, strings, lists, or even other dictionaries.

Dictionary Syntax

Python Programming 2025/26 – Session 5

Discovering Dictionaries

• Values are accessed by their key.

• There is no index!

Dictionary Syntax

Python Programming 2025/26 – Session 5

Discovering Dictionaries

• Dictionaries are dynamic – you can add or change data anytime.

Adding and Modifying Data

Python Programming 2025/26 – Session 5

Discovering Dictionaries

• Use del to permanently remove a pair.

Deleting Key–Value Pairs

Python Programming 2025/26 – Session 5

Looping through Dictionaries

• Use .items() to get both the key and its value:

Looping through key-value pairs

Python Programming 2025/26 – Session 5

Looping through Dictionaries

• If you only need the keys, use .keys():

Looping through keys only

Python Programming 2025/26 – Session 5

Looping through Dictionaries

• Use .values() to get all values:

Looping through values only

Python Programming 2025/26 – Session 5

Looping through Dictionaries

• If some values repeat, we can make them unique using set():

Avoiding Repeated Values with set()

Python Programming 2025/26 – Session 6

Defining and Calling Functions

Python Programming 2025/26 – Session 6

Defining and Calling Functions

• A function is a named block of code that performs one task.

• We use it to:

• Reuse code instead of writing the same thing many times.

• Keep programs organized and readable.

• Example idea: a machine that does one job when you press its

button.

What Is a Function?

Python Programming 2025/26 – Session 6

Defining and Calling Functions

• We have already used some functions in the past:

• len()

• sorted()

• range()

• These are built-in functions. But we can also make our own

functions!

What Is a Function?

Python Programming 2025/26 – Session 6

Defining and Calling Functions

• Basic syntax:

• def introduces a function.

• The name (greet_user) describes its job.

• The colon starts an indented block (function body).

• To run it: you must call it. Before that, nothing happens.

Defining a Function

Python Programming 2025/26 – Session 6

Defining and Calling Functions

• Create and call your own simple function.

• Example:

Mini Task 1

Python Programming 2025/26 – Session 6

Defining and Calling Functions

• Functions can accept input values.

Adding a Parameter

Python Programming 2025/26 – Session 6

Defining and Calling Functions

• Parameter: variable name inside the function definition.

• Argument: actual value passed when calling the function.

• Example:

Arguments vs Parameters

Python Programming 2025/26 – Session 6

Defining and Calling Functions

• Adjust your own function definition with a parameter and call it

with an argument.

• Example:

Mini Task 2

Python Programming 2025/26 – Session 6

Defining and Calling Functions

• You can pass more than one piece of information. Functions can

be designed with any number of parameters.

Functions with Multiple Parameters

Python Programming 2025/26 – Session 6

Defining and Calling Functions

• The arguments must be provided in the same order as the

function definition expects them.

Order matters!

Python Programming 2025/26 – Session 6

Defining and Calling Functions

• Add one more parameter to your own function and call it with

two arguments.

Mini Task 3

Python Programming 2025/26 – Session 6

Defining and Calling Functions

• Why Use Functions?

• Avoid repetition – write once, use many times.

• Improve structure – break big programs into small tasks.

• Make code readable – each function has a clear name and job.

• Define a function using def and a name.

• Use parentheses () for parameters.

• Call functions to make them run.

Wrap-up

Python Programming 2025/26 – Session 6

Passing Information to Functions

Python Programming 2025/26 – Session 6

Passing Information to Functions

• The arguments we have used so far are called positional

arguments.

Positional Arguments

Python Programming 2025/26 – Session 6

Passing Information to Functions

• The arguments we have used so far are called positional

arguments.

• The order is absolute!

Positional Arguments

Python Programming 2025/26 – Session 6

Passing Information to Functions

• The alternative is to use keywords (argument names) when

calling the function.

Keyword Arguments

Python Programming 2025/26 – Session 6

Passing Information to Functions

• Call your function by using keyword arguments.

Mini Task 4

Python Programming 2025/26 – Session 6

Passing Information to Functions

• You can provide default values to parameters.

• In the definition, default parameters come after required

parameters.

Default Values

Python Programming 2025/26 – Session 6

Passing Information to Functions

• Add a default parameter to your function and call it.

• Example:

Mini Task 5

Python Programming 2025/26 – Session 6

Passing Information to Functions

• Arguments without default values need to be added during a

function call, otherwise we receive an argument error.

Avoiding argument errors

Python Programming 2025/26 – Session 6

Passing Information to Functions

• We can use an empty string “” or None to make an argument

optional.

Optional Values

Python Programming 2025/26 – Session 6

Passing Information to Functions

• We can use an empty string “” or None to make an argument

optional.

Optional Values

Python Programming 2025/26 – Session 6

Passing Information to Functions

• Functions can take multiple inputs in flexible ways.

• Use positional, keyword, and default arguments effectively.

• Add optional parameters for versatility.

Wrap-up

Python Programming 2025/26 – Session 6

Returning Values

Python Programming 2025/26 – Session 6

Returning Values

• So far, we have always printed the result of our functions using a

direct print().

Returning values

Python Programming 2025/26 – Session 6

Returning Values

• Usually, the result of a function call is returned as a value.

• With return, the result can be stored or reused.

Returning values

Python Programming 2025/26 – Session 6

Returning Values

• We can capture the return value of a function with an

assignment.

Capturing Return Values

Python Programming 2025/26 – Session 6

Returning Values

• We can write a function to repeat common tasks

Returning text

Python Programming 2025/26 – Session 6

Returning Values

• Write your own function that accepts arguments and returns a

value instead of printing it. You can use text or number

arguments, as you wish.

• Example:

Mini Task 6

Python Programming 2025/26 – Session 6

Returning Values

• Use default or optional parameters in return functions.

Optional Arguments with Return

Python Programming 2025/26 – Session 6

Returning Values

• Functions can build and return structured data.

Returning a Dictionary

Python Programming 2025/26 – Session 6

Returning Values

• Adjust your own function to return a dictionary instead of a

single value.

• Remember:

Mini Task 7

Python Programming 2025/26 – Session 6

Returning Values

• Functions can decide what value to return based on conditions.

Returning from Conditional Logic

Python Programming 2025/26 – Session 6

Returning Values

• What do you think result will be?

Using Returned Values in Loops

Python Programming 2025/26 – Session 6

Returning Values

• What do you think result will be?

Using Returned Values in Loops

Python Programming 2025/26 – Session 6

Returning Values

• Use return to send results back to the caller.

• Store and reuse those results later.

• Use print() in the function only to inform the user about a result.

Wrap-up

Python Programming 2025/26 – Session 6

Passing Lists and Using *args / kwargs

Python Programming 2025/26 – Session 6

Passing Lists and Using *args / kwargs

• We can also pass a list as an argument.

Moving Data Between Lists

Python Programming 2025/26 – Session 6

Passing Lists and Using *args / kwargs

• We can (of course) also pass a list as an argument.

Moving Data Between Lists

Python Programming 2025/26 – Session 6

Passing Lists and Using *args / kwargs

• Make any function that accepts a list as argument and does

something with the list.

Mini Task 8

Python Programming 2025/26 – Session 6

Passing Lists and Using *args / kwargs

• If we do not know the number of arguments, we can work with

arbitrary arguments.

• The arguments will be passed as a tuple.

Arbitrary Arguments

Python Programming 2025/26 – Session 6

Passing Lists and Using *args / kwargs

• A tuple is similar to a list, but it can’t be changed after creation.

• A tuple uses parentheses instead of brackets.

Tuple ???

Python Programming 2025/26 – Session 6

Passing Lists and Using *args / kwargs

• We can mix normal arguments with *args by defining normal

parameters first before adding *args.

Mixing normal arguments with *args

Python Programming 2025/26 – Session 6

Passing Lists and Using *args / kwargs

• Write a function sandwich(*args) that prints all provided

toppings.

• Reminder:

Mini Task 9

Python Programming 2025/26 – Session 6

Passing Lists and Using *args / kwargs

• Using **kwargs, we can pack arbitrary arguments into a dictionary

that is passed to the function.

Arbitrary Keyword Args **kwargs

Python Programming 2025/26 – Session 6

Passing Lists and Using *args / kwargs

• We can use lists as arguments and return lists.

• *args packs all arbitrary arguments into a tuple and passes them

to the function.

• **kwargs packs all arbitrary arguments into a dictionary (with

keywords) and passes them to the function.

Wrap-up

Python Programming 2025/26 – Session 6

Exercises

Python Programming 2025/26 – Session 6

Exercises

• Build one pizza-ordering function that grows with each task.

• You can find the task list in the CheatSheet_06.py file on the

server.

• Try to finish as many tasks as possible!

Pizza making

	Slide 1
	Slide 2: Python Programming
	Slide 3: Content
	Slide 4: Python Programming 2025/26 – Session 6
	Slide 5: Python Programming 2025/26 – Session 6
	Slide 6: Python Programming 2025/26 – Session 6
	Slide 7: Python Programming 2025/26 – Session 6
	Slide 8: Python Programming 2025/26 – Session 6
	Slide 9: Python Programming 2025/26 – Session 5
	Slide 10: Python Programming 2025/26 – Session 5
	Slide 11: Python Programming 2025/26 – Session 5
	Slide 12: Python Programming 2025/26 – Session 5
	Slide 13: Python Programming 2025/26 – Session 5
	Slide 14: Python Programming 2025/26 – Session 5
	Slide 15: Python Programming 2025/26 – Session 5
	Slide 16: Python Programming 2025/26 – Session 5
	Slide 17: Python Programming 2025/26 – Session 5
	Slide 18: Python Programming 2025/26 – Session 6
	Slide 19: Python Programming 2025/26 – Session 6
	Slide 20: Python Programming 2025/26 – Session 6
	Slide 21: Python Programming 2025/26 – Session 6
	Slide 22: Python Programming 2025/26 – Session 6
	Slide 23: Python Programming 2025/26 – Session 6
	Slide 24: Python Programming 2025/26 – Session 6
	Slide 25: Python Programming 2025/26 – Session 6
	Slide 26: Python Programming 2025/26 – Session 6
	Slide 27: Python Programming 2025/26 – Session 6
	Slide 28: Python Programming 2025/26 – Session 6
	Slide 29: Python Programming 2025/26 – Session 6
	Slide 30: Python Programming 2025/26 – Session 6
	Slide 31: Python Programming 2025/26 – Session 6
	Slide 32: Python Programming 2025/26 – Session 6
	Slide 33: Python Programming 2025/26 – Session 6
	Slide 34: Python Programming 2025/26 – Session 6
	Slide 35: Python Programming 2025/26 – Session 6
	Slide 36: Python Programming 2025/26 – Session 6
	Slide 37: Python Programming 2025/26 – Session 6
	Slide 38: Python Programming 2025/26 – Session 6
	Slide 39: Python Programming 2025/26 – Session 6
	Slide 40: Python Programming 2025/26 – Session 6
	Slide 41: Python Programming 2025/26 – Session 6
	Slide 42: Python Programming 2025/26 – Session 6
	Slide 43: Python Programming 2025/26 – Session 6
	Slide 44: Python Programming 2025/26 – Session 6
	Slide 45: Python Programming 2025/26 – Session 6
	Slide 46: Python Programming 2025/26 – Session 6
	Slide 47: Python Programming 2025/26 – Session 6
	Slide 48: Python Programming 2025/26 – Session 6
	Slide 49: Python Programming 2025/26 – Session 6
	Slide 50: Python Programming 2025/26 – Session 6
	Slide 51: Python Programming 2025/26 – Session 6
	Slide 52: Python Programming 2025/26 – Session 6
	Slide 53: Python Programming 2025/26 – Session 6
	Slide 54: Python Programming 2025/26 – Session 6
	Slide 55: Python Programming 2025/26 – Session 6
	Slide 56: Python Programming 2025/26 – Session 6
	Slide 57: Python Programming 2025/26 – Session 6
	Slide 58: Python Programming 2025/26 – Session 6
	Slide 59: Python Programming 2025/26 – Session 6
	Slide 60: Python Programming 2025/26 – Session 6
	Slide 61: Python Programming 2025/26 – Session 6
	Slide 62: Python Programming 2025/26 – Session 6
	Slide 63: Python Programming 2025/26 – Session 6
	Slide 64: Python Programming 2025/26 – Session 6
	Slide 65: Python Programming 2025/26 – Session 6

