Download the cheat sheets and slides from here

t-l.earth

Tom Lotz Index of / teaChlllg
Jinling Institute of Technology (Nanjing, China)
Research on Microplastics, Hydrology, and Machine Learning Name Last modified Size Description

Apache/2 4.29 (Ubuntu) Server at t-l.earth Port 443

Pythonif & # fr ix if
Python Programming
2025/26

o

Session 06

Tom Lotz (tom.lotz@outlook.com)

01
02
03
04
05

Content

Brain Activation + Review

Defining and Calling Functions
Passing Information to Functions
Returning Values

Passing Lists and Using *args / kwargs

Exercises

Python Programming 2025/26 - Session 6

Brain Activation

Python Programming 2025/26 - Session 6
Brain Activation

Loop Through a List

« Make a list of three cities, then print each one.

cities = ["Nanjing", "Paris", "Tokyo"]
for city in cities:
print(city)

Python Programming 2025/26 - Session 6
Brain Activation

Positive or Negative?

* Use an if statement to test each number in a list to see if it is
positive or negative and print the result.

numbers = [3, -1, 7]
for n in numbers:
if n > 0:
print(n, "is positive")
else:
print(n, "is negative")

Python Programming 2025/26 - Session 6
Brain Activation

Mini Dictionary Recap

« Create a small dictionary describing one student.

student = {"name": "Ali", "age": 20}
print(f"My name is {student['name']} and I am {student['age']} years old.")

Python Programming 2025/26 - Session 6

Review

Python Programming 2025/26 - Session 5

Discovering Dictionaries

Why Dictionaries?

« Lists: store items by position.

fruits = ["apple", |"banana", "cherry"]
print(fruits[B]) # 'apple’

 Dictionaries: store items by name (key).

person = {"name": "Ali"| "age": 208}
print(person["name"]) # 'Ali'

Python Programming 2025/26 - Session 5
Discovering Dictionaries

Dictionary Syntax

« Adictionary is wrapped in curly braces . Each key is connected
to a value with a colon . Multiple pairs are separated by
commas.

dict = {"key 1": "value 1", "key 2": "value 2"}

« Keys: must be unique.

« Values: can be numbers, strings, lists, or even other dictionaries.

Python Programming 2025/26 - Session 5

Discovering Dictionaries

Dictionary Syntax

» Values are accessed by their key.

person = {"name": "Ali", "age": 20}
print(person["name"]) # 'Ali’

e There is no index!

Python Programming 2025/26 - Session 5

Discovering Dictionaries

Adding and Modifying Data

 Dictionaries are dynamic - you can add or change data anytime.

"name": "ALi"

student =

student["major"] = "Software Engineering" # add
student["age"] = 21 # modify
print(student) # {'name': 'Ali', 'age': 21, 'major': 'Software Engineering'}

Python Programming 2025/26 - Session 5

Discovering Dictionaries

Deleting Key-Value Pairs

* Use to permanently remove a pair.

alien = {"color": "green", "points": 5}
del alien["points"]
print(alien) # {'color': 'green'}

Python Programming 2025/26 - Session 5
Looping through Dictionaries

Looping through key-value pairs

« Use to get both the key and its value:

student = {"name": "Ali", "age": 21, "major": "Software Engineering"}
for key, value in student.items():
print(key, value)

name Ali
age 21
major Software Engilineering

Python Programming 2025/26 - Session 5
Looping through Dictionaries

Looping through keys only

* If you only need the keys, use

student = {"name": "Ali", "age": 21, "major": "Software Engineering"}
for key in student.keys():
print (key)

name
age
major

Python Programming 2025/26 - Session 5
Looping through Dictionaries

Looping through values only

« Use to get all values:

student = {"name": "Ali", "age": 21, "major": "Software Engineering"}
for value in student.values():
print(value)

Ali
21
Software Engineering

Python Programming 2025/26 - Session 5
Looping through Dictionaries

Avoiding Repeated Values with set()

 |f some values repeat, we can make them unique using
favorite_languages = {
'Jen': 'python',
‘sarah': 'c',
‘edward’': 'rust',
'phil': 'python'

} Python

for language in set(favorite_languages.values()): Rust
print(language.title()) /E

e

Python Programming 2025/26 - Session 6

Defining and Calling Functions

Python Programming 2025/26 - Session 6
Defining and Calling Functions

What Is a Function?

« A function is a named block of code that performs one task.
* We use it to:
» Reuse code instead of writing the same thing many times.
« Keep programs organized and readable.

« Example idea: a machine that does one job when you press its
button.

machine()

Python Programming 2025/26 - Session 6
Defining and Calling Functions

What Is a Function?

« We have already used some functions in the past:
 len()
« sorted()
* range()

« These are built-in functions. But we can also make our own
functions!

Python Programming 2025/26 - Session 6
Defining and Calling Functions

Defining a Function

Basic syntax:
def greet_user(): 1

print("Hello!")

introduces a function.

The name () describes its job.

The colon starts an indented block (function body).

To run it: you must call it. Before that, nothing happens.

greet_user()

Python Programming 2025/26 - Session 6
Defining and Calling Functions

Mini Task 1

« Create and call your own simple function.

« Example:

def greet_user(): 1
print("Hello!")

greet_user()

Python Programming 2025/26 - Session 6
Defining and Calling Functions

Adding a Parameter

* Functions can accept input values.

def greet_user(name):
print("Hello, ", name)

greet_user("Lina")
greet_user("Maxi")

Python Programming 2025/26 - Session 6
Defining and Calling Functions

Arguments vs Parameters

« Parameter: variable name inside the function definition.
« Argument: actual value passed when calling the function.

« Example:

def greet_user(name): #name = Parameter
print("Hello, ", name)

greet_user("Lina") # "Lina" = Argument

Python Programming 2025/26 - Session 6
Defining and Calling Functions

Mini Task 2

 Adjust your own function definition with a parameter and call it
with an argument.

« Example:

def greet_user(name): #name = Parameter
print("Hello, ", name)

greet_user("Lina") # "Lina" = Argument

Python Programming 2025/26 - Session 6
Defining and Calling Functions

Functions with Multiple Parameters

* You can pass more than one piece of information. Functions can
be desighed with any humber of parameters.

def describe_pet(animal, name):
print("I have a ", animal, " named ",name)

describe_pet("dog", "Max")

Python Programming 2025/26 - Session 6
Defining and Calling Functions

Order matters!

« The arguments must be provided in the same order as the
function definition expects them.

describe_pet("dog", "Max")
describe_pet("Max", "dog")

I have a dog named Max
I have a Max named dog

Python Programming 2025/26 - Session 6
Defining and Calling Functions

Mini Task 3

« Add one more parameter to your own function and call it with
two arguments.

Python Programming 2025/26 - Session 6
Defining and Calling Functions

Wrap-up

* Why Use Functions?

 Avoid repetition - write once, use many times.

* Improve structure - break big programs into small tasks.

* Make code readable - each function has a clear name and job.
« Define a function using and a hame.
» Use parentheses () for parameters.

e Call functions to make them run.

Python Programming 2025/26 - Session 6

Passing Information to Functions

Python Programming 2025/26 - Session 6
Passing Information to Functions

Positional Arguments

« The arguments we have used so far are called positional
arguments.

def describe_pet(animal, name):
print("I have a ", animal, " named ",name)

describe_pet("dog", "Max")

Python Programming 2025/26 - Session 6
Passing Information to Functions

Positional Arguments

« The arguments we have used so far are called positional
arguments.

def describe_pet(animal, name):
print("I have a ", animal, " named ",name)

describe_pet("dog", "Max")

 The order is absolute!

Python Programming 2025/26 - Session 6
Passing Information to Functions

Keyword Arguments

* The alternative is to use keywords (argument names) when
calling the function.

def describe_pet(animal, name):
print("I have a ", animal, " named ",name)

describe_pet(animal="dog", name="Max")
describe_pet(name="Max", animal="dog")

I have a dog named Max
I have a dog named Max

Python Programming 2025/26 - Session 6
Passing Information to Functions

Mini Task 4

 Call your function by using keyword arguments.

Python Programming 2025/26 - Session 6
Passing Information to Functions

Default Values

* You can provide default values to parameters.

 In the definition, default parameters come after required
parameters.

def describe_pet(name, animal = "dog"):
print("I have a ", animal, " named ",name)

describe_pet(name="Max", animal="dog") I have a dog named Max

describe_pet(name="Max") I have a dog named Max

describe_pet(name="Max", animal="cat") I have a cat named Max

Python Programming 2025/26 - Session 6
Passing Information to Functions

Mini Task 5

« Add a default parameter to your function and call it.

« Example:

def describe_pet(name, animal = "dog"):
print("I have a ", animal, " named ",name)

describe_pet(name="Max", animal="dog")
describe_pet(name="Max")
describe_pet(name="Max", animal="cat")

Python Programming 2025/26 - Session 6
Passing Information to Functions

Avoiding argument errors

« Arguments without default values need to be added during a
function call, otherwise we receive an argument error.

def greet_user(name):
print("Hello, ", name)

greet_user() # -> Argument Error

TypeError: greet_user() missing 1 required positional argument: 'name'’

e

Python Programming 2025/26 - Session 6
Passing Information to Functions

Optional Values

* We can use an empty string “” or to make an argument
optional.

def print_full_name(first, last, middle=""):
if middle:
print(first, middle, ",", last)
else:
print(first, ",", last)

print_full_name("John", "Doe") # John , Doe
print_full_name("John", "Doe", "Lee") # John Lee , Doe

e

Python Programming 2025/26 - Session 6
Passing Information to Functions

Optional Values

* We can use an empty string “” or to make an argument
optional.

def print_full_name(first, last, middle=None):
if middle:
print(first, middle, ",", last)
else:
print(first, ",", last)

print_full_name("John", "Doe") # John , Doe
print_full_name("John", "Doe", "Lee") # John Lee , Doe

Python Programming 2025/26 - Session 6
Passing Information to Functions

Wrap-up

* Functions can take multiple inputs in flexible ways.
» Use positional, keyword, and default arguments effectively.

» Add optional parameters for versatility.

Python Programming 2025/26 - Session 6

Returning Values

Python Programming 2025/26 - Session 6
Returning Values

Returning values

« So far, we have always printed the result of our functions using a
direct print().

def add(a, b):
print(a + b)

add(1, 2)

Python Programming 2025/26 - Session 6
Returning Values

Returning values

« Usually, the result of a function call is returned as a value.

« With , the result can be stored or reused.

def add(a, b):
return a + b

Python Programming 2025/26 - Session 6
Returning Values

Capturing Return Values

* We can capture the return value of a function with an
assignment.

def add(a, b):
return a + b

c = add(1, 2)

print(c)

Python Programming 2025/26 - Session 6
Returning Values

Returning text

« We can write a function to repeat common tasks

def get_full_name(first, last):
full = first + " " + last
return full.title()

musician = get_full_name("jimi", "hendrix")
print(musician) # Jimi Hendrix

Python Programming 2025/26 - Session 6
Returning Values

Mini Task 6

* Write your own function that accepts arguments and returns a
value instead of printing it. You can use text or number
arguments, as you wish.

« Example:

def get_full_name(first, last):
full = first + " " + last
return full.title()

musician = get_full_name("jimi", "hendrix")
print(musician) # Jimi Hendrix

Python Programming 2025/26 - Session 6
Returning Values

Optional Arguments with Return

« Use default or optional parameters in return functions.

def return_full_name(first, last, middle=None):

if middle:

full_name = first + " " + middle + ", " + last
else:

full_name = first + ", " + last

return full_name

full_name = return_full_name("John", "Doe")
print(full_name) # John, Doe
full_name = return_full_name("John", "Doe", "Lee")

print(full_name) # John Lee, Doe

Python Programming 2025/26 - Session 6
Returning Values

Returning a Dictionary

 Functions can build and return structured data.

def build_person(first, last, age):
erson = {"first": first, "last": last}

person["age"] = age
return person

musician = build_person("jimi", "hendrix", 27)
print(musician) # {'first': 'jimi', 'last': 'hendrix', ‘'age': 27}

print(musician["first"]) # jimi

Python Programming 2025/26 - Session 6
Returning Values

Mini Task 7

» Adjust your own function to return a dictionary instead of a
single value.

e Remember:

dictl = {}

dictl["vall"]
dictl["val2"]

I
=

"text"

Python Programming 2025/26 - Session 6
Returning Values

Returning from Conditional Logic

 Functions can decide what value to return based on conditions.

def pos_or_neg(number):
if number < 0:
return "Negative"
elif number > 0O:
return "Positive"

r = pos_or_neg(3)
print(r) # Positive

Python Programming 2025/26 - Session 6
Returning Values

Using Returned Values in Loops

« What do you think will be?

def square(n):
return n %% 2

numbers = [1, 2, 3, 4]

results = []

for n in numbers:
results.append(square(n))

print(results)

Python Programming 2025/26 - Session 6
Returning Values

Using Returned Values in Loops

« What do you think will be?

def square(n):
return n %% 2

numbers = [1, 2, 3, 4]
results = []

for n in numbers:

[1, 4, 9, 16]

results.append(square(n))

print(results)

Python Programming 2025/26 - Session 6
Returning Values

Wrap-up

e Use to send results back to the caller.

e Store and reuse those results later.

« Use in the function only to inform the user about a result.

Python Programming 2025/26 - Session 6

Passing Lists and Using *args / kwargs

Python Programming 2025/26 - Session 6
Passing Lists and Using *args / kwargs

Moving Data Between Lists

* We can also pass a list as an argument.

def move(src):
dst = []
while src:
dst.append(src.pop())
return dst

old = ['a', 'b']

new = move(old[:]) # vuse copy !!!
print(new) # ['b', 'a']

print(old) # ['a', 'b'] stays unchanged

Python Programming 2025/26 - Session 6
Passing Lists and Using *args / kwargs

Moving Data Between Lists

* We can (of course) also pass a list as an argument.

def move(src):
dst = []
while src:
dst.append(src.pop())
return dst

old = ['a', 'b']

new = move(old[:]) # vuse copy !!!
print(new) # ['b', 'a']

print(old) # ['a', 'b'] stays unchanged

Python Programming 2025/26 - Session 6
Passing Lists and Using *args / kwargs

Mini Task 8

* Make any function that accepts a list as argument and does
something with the list.

Python Programming 2025/26 - Session 6
Passing Lists and Using *args / kwargs

Arbitrary Arguments

 |If we do not know the number of arguments, we can work with
arbitrary arguments.

« The arguments will be passed as a tuple.

def pizza(*args):
print('Pizza with:', args)

pizza('cheese') # Pizza with: ('cheese',)
pizza('mushroom', 'onion') # Pizza with: ('mushroom', 'onion')

Python Programming 2025/26 - Session 6
Passing Lists and Using *args / kwargs

Tuple 7?7

« Atuple is similar to a list, but it can’t be changed after creation.

« A tuple uses parentheses instead of brackets.

-
I

("cheese","mushroom","onion") # immutable

~
I

["cheese","mushroom","onion"] # mutable

Python Programming 2025/26 - Session 6
Passing Lists and Using *args / kwargs

Mixing normal arguments with *args

« We can mix normal arguments with *args by defining normal
parameters first before adding *args.

def pizza(size, *t):
print(size, 'inch:', t)

pizza(12, 'cheese', 'olives')

Python Programming 2025/26 - Session 6
Passing Lists and Using *args / kwargs

Mini Task 9

* Write a function sandwich(*args) that prints all provided
toppings.

e Reminder:

def pizza(*args):
print('Pizza with:', args)

Python Programming 2025/26 - Session 6

Passing Lists and Using *args / kwargs

Arbitrary Keyword Args **kwargs

« Using **kwargs, we can pack arbitrary arguments into a dictionary
that is passed to the function.

def car(make, model, #**x):
¥['make'] = make
X['model'] = model

return X

carl = car('BMW', 'X3', color='red"')
print(carl) # {'color': 'red', 'make': 'BMW', 'model': 'X3'}

e

Python Programming 2025/26 - Session 6
Passing Lists and Using *args / kwargs

Wrap-up

* We can use lists as arguments and return lists.

« *args packs all arbitrary arguments into a tuple and passes them
to the function.

« **kwargs packs all arbitrary arguments into a dictionary (with
keywords) and passes them to the function.

Python Programming 2025/26 - Session 6

Exercises

Python Programming 2025/26 - Session 6
Exercises

Pizza making

 Build one pizza-ordering function that grows with each task.

* You can find the task list in the CheatSheet_06.py file on the
server.

« Try to finish as many tasks as possible!

	Slide 1
	Slide 2: Python Programming
	Slide 3: Content
	Slide 4: Python Programming 2025/26 – Session 6
	Slide 5: Python Programming 2025/26 – Session 6
	Slide 6: Python Programming 2025/26 – Session 6
	Slide 7: Python Programming 2025/26 – Session 6
	Slide 8: Python Programming 2025/26 – Session 6
	Slide 9: Python Programming 2025/26 – Session 5
	Slide 10: Python Programming 2025/26 – Session 5
	Slide 11: Python Programming 2025/26 – Session 5
	Slide 12: Python Programming 2025/26 – Session 5
	Slide 13: Python Programming 2025/26 – Session 5
	Slide 14: Python Programming 2025/26 – Session 5
	Slide 15: Python Programming 2025/26 – Session 5
	Slide 16: Python Programming 2025/26 – Session 5
	Slide 17: Python Programming 2025/26 – Session 5
	Slide 18: Python Programming 2025/26 – Session 6
	Slide 19: Python Programming 2025/26 – Session 6
	Slide 20: Python Programming 2025/26 – Session 6
	Slide 21: Python Programming 2025/26 – Session 6
	Slide 22: Python Programming 2025/26 – Session 6
	Slide 23: Python Programming 2025/26 – Session 6
	Slide 24: Python Programming 2025/26 – Session 6
	Slide 25: Python Programming 2025/26 – Session 6
	Slide 26: Python Programming 2025/26 – Session 6
	Slide 27: Python Programming 2025/26 – Session 6
	Slide 28: Python Programming 2025/26 – Session 6
	Slide 29: Python Programming 2025/26 – Session 6
	Slide 30: Python Programming 2025/26 – Session 6
	Slide 31: Python Programming 2025/26 – Session 6
	Slide 32: Python Programming 2025/26 – Session 6
	Slide 33: Python Programming 2025/26 – Session 6
	Slide 34: Python Programming 2025/26 – Session 6
	Slide 35: Python Programming 2025/26 – Session 6
	Slide 36: Python Programming 2025/26 – Session 6
	Slide 37: Python Programming 2025/26 – Session 6
	Slide 38: Python Programming 2025/26 – Session 6
	Slide 39: Python Programming 2025/26 – Session 6
	Slide 40: Python Programming 2025/26 – Session 6
	Slide 41: Python Programming 2025/26 – Session 6
	Slide 42: Python Programming 2025/26 – Session 6
	Slide 43: Python Programming 2025/26 – Session 6
	Slide 44: Python Programming 2025/26 – Session 6
	Slide 45: Python Programming 2025/26 – Session 6
	Slide 46: Python Programming 2025/26 – Session 6
	Slide 47: Python Programming 2025/26 – Session 6
	Slide 48: Python Programming 2025/26 – Session 6
	Slide 49: Python Programming 2025/26 – Session 6
	Slide 50: Python Programming 2025/26 – Session 6
	Slide 51: Python Programming 2025/26 – Session 6
	Slide 52: Python Programming 2025/26 – Session 6
	Slide 53: Python Programming 2025/26 – Session 6
	Slide 54: Python Programming 2025/26 – Session 6
	Slide 55: Python Programming 2025/26 – Session 6
	Slide 56: Python Programming 2025/26 – Session 6
	Slide 57: Python Programming 2025/26 – Session 6
	Slide 58: Python Programming 2025/26 – Session 6
	Slide 59: Python Programming 2025/26 – Session 6
	Slide 60: Python Programming 2025/26 – Session 6
	Slide 61: Python Programming 2025/26 – Session 6
	Slide 62: Python Programming 2025/26 – Session 6
	Slide 63: Python Programming 2025/26 – Session 6
	Slide 64: Python Programming 2025/26 – Session 6
	Slide 65: Python Programming 2025/26 – Session 6

