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Brain Activation
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Brain Activation

• Make a list of three cities, then print each one.

Loop Through a List



Python Programming 2025/26 – Session 6

Brain Activation

• Use an if statement to test each number in a list to see if it is 

positive or negative and print the result.

Positive or Negative?
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Brain Activation

• Create a small dictionary describing one student.

Mini Dictionary Recap
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Review
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Discovering Dictionaries

• Lists: store items by position.

• Dictionaries: store items by name (key).

Why Dictionaries?
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Discovering Dictionaries

• A dictionary is wrapped in curly braces { }. Each key is connected 

to a value with a colon :. Multiple pairs are separated by 

commas.

• Keys: must be unique.

• Values: can be numbers, strings, lists, or even other dictionaries.

Dictionary Syntax
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Discovering Dictionaries

• Values are accessed by their key.

• There is no index!

Dictionary Syntax
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Discovering Dictionaries

• Dictionaries are dynamic – you can add or change data anytime.

Adding and Modifying Data
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Discovering Dictionaries

• Use del to permanently remove a pair.

Deleting Key–Value Pairs
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Looping through Dictionaries

• Use .items() to get both the key and its value:

Looping through key-value pairs
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Looping through Dictionaries

• If you only need the keys, use .keys():

Looping through keys only
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Looping through Dictionaries

• Use .values() to get all values:

Looping through values only
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Looping through Dictionaries

• If some values repeat, we can make them unique using set():

Avoiding Repeated Values with set()
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Defining and Calling Functions

• A function is a named block of code that performs one task.

• We use it to:

• Reuse code instead of writing the same thing many times.

• Keep programs organized and readable.

• Example idea: a machine that does one job when you press its 

button.

What Is a Function?
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Defining and Calling Functions

• We have already used some functions in the past:

• len()

• sorted()

• range()

• These are built-in functions. But we can also make our own 

functions!

What Is a Function?
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Defining and Calling Functions

• Basic syntax:

• def introduces a function.

• The name (greet_user) describes its job.

• The colon starts an indented block (function body).

• To run it: you must call it. Before that, nothing happens.

Defining a Function
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Defining and Calling Functions

• Create and call your own simple function.

• Example:

Mini Task 1
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Defining and Calling Functions

• Functions can accept input values.

Adding a Parameter



Python Programming 2025/26 – Session 6

Defining and Calling Functions

• Parameter: variable name inside the function definition.

• Argument: actual value passed when calling the function.

• Example:

Arguments vs Parameters
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Defining and Calling Functions

• Adjust your own function definition with a parameter and call it 

with an argument.

• Example:

Mini Task 2
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Defining and Calling Functions

• You can pass more than one piece of information. Functions can 

be designed with any number of parameters.

Functions with Multiple Parameters
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Defining and Calling Functions

• The arguments must be provided in the same order as the 

function definition expects them.

Order matters!
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Defining and Calling Functions

• Add one more parameter to your own function and call it with 

two arguments.

Mini Task 3
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Defining and Calling Functions

• Why Use Functions?

• Avoid repetition – write once, use many times.

• Improve structure – break big programs into small tasks.

• Make code readable – each function has a clear name and job.

• Define a function using def and a name.

• Use parentheses () for parameters.

• Call functions to make them run.

Wrap-up
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Passing Information to Functions

• The arguments we have used so far are called positional 

arguments.

Positional Arguments
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Passing Information to Functions

• The arguments we have used so far are called positional 

arguments.

• The order is absolute!

Positional Arguments
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Passing Information to Functions

• The alternative is to use keywords (argument names) when 

calling the function.

Keyword Arguments
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Passing Information to Functions

• Call your function by using keyword arguments.

Mini Task 4
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Passing Information to Functions

• You can provide default values to parameters.

• In the definition, default parameters come after required 

parameters.

Default Values
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Passing Information to Functions

• Add a default parameter to your function and call it.

• Example:

Mini Task 5
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Passing Information to Functions

• Arguments without default values need to be added during a 

function call, otherwise we receive an argument error.

Avoiding argument errors
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Passing Information to Functions

• We can use an empty string “” or None to make an argument 

optional.

Optional Values
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Passing Information to Functions

• We can use an empty string “” or None to make an argument 

optional.

Optional Values
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Passing Information to Functions

• Functions can take multiple inputs in flexible ways.

• Use positional, keyword, and default arguments effectively.

• Add optional parameters for versatility.

Wrap-up
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Returning Values

• So far, we have always printed the result of our functions using a 

direct print().

Returning values
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Returning Values

• Usually, the result of a function call is returned as a value.

• With return, the result can be stored or reused.

Returning values
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Returning Values

• We can capture the return value of a function with an 

assignment.

Capturing Return Values
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Returning Values

• We can write a function to repeat common tasks

Returning text



Python Programming 2025/26 – Session 6

Returning Values

• Write your own function that accepts arguments and returns a 

value instead of printing it. You can use text or number 

arguments, as you wish.

• Example:

Mini Task 6
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Returning Values

• Use default or optional parameters in return functions.

Optional Arguments with Return
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Returning Values

• Functions can build and return structured data.

Returning a Dictionary
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Returning Values

• Adjust your own function to return a dictionary instead of a 

single value.

• Remember:

Mini Task 7
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Returning Values

• Functions can decide what value to return based on conditions.

Returning from Conditional Logic
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Returning Values

• What do you think result will be?

Using Returned Values in Loops
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Returning Values

• What do you think result will be?

Using Returned Values in Loops
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Returning Values

• Use return to send results back to the caller.

• Store and reuse those results later.

• Use print() in the function only to inform the user about a result.

Wrap-up
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Passing Lists and Using *args / kwargs

• We can also pass a list as an argument.

Moving Data Between Lists
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Passing Lists and Using *args / kwargs

• We can (of course) also pass a list as an argument.

Moving Data Between Lists
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Passing Lists and Using *args / kwargs

• Make any function that accepts a list as argument and does 

something with the list.

Mini Task 8
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Passing Lists and Using *args / kwargs

• If we do not know the number of arguments, we can work with 

arbitrary arguments.

• The arguments will be passed as a tuple.

Arbitrary Arguments
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Passing Lists and Using *args / kwargs

• A tuple is similar to a list, but it can’t be changed after creation.

• A tuple uses parentheses instead of brackets.

Tuple ???
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Passing Lists and Using *args / kwargs

• We can mix normal arguments with *args by defining normal 

parameters first before adding *args.

Mixing normal arguments with *args
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Passing Lists and Using *args / kwargs

• Write a function sandwich(*args) that prints all provided 

toppings.

• Reminder:

Mini Task 9
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Passing Lists and Using *args / kwargs

• Using **kwargs, we can pack arbitrary arguments into a dictionary 

that is passed to the function.

Arbitrary Keyword Args **kwargs
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Passing Lists and Using *args / kwargs

• We can use lists as arguments and return lists.

• *args packs all arbitrary arguments into a tuple and passes them 

to the function.

• **kwargs packs all arbitrary arguments into a dictionary (with 

keywords) and passes them to the function.

Wrap-up
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Exercises

• Build one pizza-ordering function that grows with each task.

• You can find the task list in the CheatSheet_06.py file on the 

server.

• Try to finish as many tasks as possible!

Pizza making
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