Python Programming End of Term
Project

Apply Python skills to design a functional program. Demonstrate mastery of core concepts including data
structures, control flow, functions, OOP, and file handling.

Key Points

Objective Requirements

Apply Python skills to design a functional Individual project, Deadline: Jan 9, 2026.

program. Demonstrate mastery of core Choose Basic, Medium, or Expert level based

concepts (data structures, control flow,

on your skill.
functions, OOP, file handling).
Assessment Submission
Functionality (40%), Code Quality (30%), Email: tom.lotz@outlook.com, include Name
Creativity (20%), Documentation (10%). and Student ID. Attach all relevant files.

Project Objective

The year-end project is designed to assess your ability to apply the Python programming skills you've learned
throughout the semester. You will be tasked with designing and implementing a functional Python program
that solves a real-world problem or fulfills a specific use case. The project will require you to demonstrate
mastery of core Python concepts, including data structures, control flow, functions, object-oriented
programming (OOP), and file handling.

The project allows for flexibility in terms of complexity. You can choose to focus on a basic implementation,
develop a more complex system with added features, or challenge yourself with an advanced solution.
Regardless of the level, your project should showcase your ability to write clean, well-organized, and modular
Python code that is both efficient and easy to maintain.


mailto:tom.lotz@outlook.com

Requirements

Individual Work

Each student has to submit their own project, no
team work.

Deadline

January 9, 2026

Three Levels

The project has three levels of requirements:
Basic, Medium, and Expert, allowing students to
choose the complexity based on their current skill
level.

o Basic Level: Covers essential Python concepts such as syntax, data types, and control flow. This level

ensures a solid foundation for all students.

o Medium Level: For students comfortable with the basics, adding more advanced features like file

handling and object-oriented programming to enhance your project.

o Expert Level: For students looking for a challenge, focusing on complex systems, external libraries, and

advanced techniques.

Choose the level that matches your abilities, but feel free to start with a basic project and add more

complexity as you improve.



Comprehensive Project Requirements by Level

Concept/Task

Python Syntax & Data
Types

Control Flow & Loops

Functions

File Handling

Error Handling

Basic

Use basic data types
(integers, strings,
booleans) and work
with lists, dictionaries,
and tuples.

Implement basic
conditional logic (if,
else) and loops (for,
while).

Define and use basic
functions.

Not applicable.

Basic error handling
with try/except for
general errors.

Medium

Use nested data
structures like lists of
dictionaries or
dictionaries of lists.

Use loops and
conditions to create
interactive programs.
Implement flow
control (break,
continue).

Organize code into
well-defined
functions, handle
parameters and
return values.

Handle CSV or JSON
files. Include basic
file error handling.

Implement custom
exceptions and
handle errors for user
inputs.

Expert

Work with complex
data structures and
external libraries like
pandas for data
manipulation or
integration with APIs.

Handle complex
scenarios with multi-
layered loops and
conditional logic,
such as nested loops
and exception
handling.

Modularize the
program into
reusable, testable
functions. Include
comprehensive error
handling and
validation.

Implement advanced
file processing with
structured formats
(CSV, JSON) or
integrate with a
database for CRUD
operations.

Advanced exception
handling, logging, and
debugging
techniques. Manage
error recovery and
ensure robustness in
real-world use cases.



Comprehensive Project Requirements by Level

Concept/Task

Object-Oriented
Programming (OOP)

Modularization &
Code Structure

User Input &
Interaction

Advanced Features

Basic

Create simple classes
with attributes and
methods.

Write simple, non-
modular scripts.

Handle user input
through the console.

Not applicable.

Medium

Design classes with
inheritance or
composition. Use
classes to model real-
world objects (e.g.,
users, tasks).

Refactor code into
functions to improve
readability and
maintainability.

Build simple
interactive programs
with menus or basic
command-line
prompts.

Optionally integrate
libraries or APIs (e.g.,
requests for web
interaction).

Expert

Build complex class
systems with multiple
levels of inheritance,
polymorphism, and
encapsulation. Use
design patterns for
better structure and
scalability.

Organize the code
into multiple well-
defined modules or
packages. Ensure
clear structure and
proper separation of
concerns.

Build complex user
interfaces using
libraries like Tkinter,
or implement a GUI
with interactive
elements.

Integrate external
libraries for added
functionality (e.g.,
data visualization
with matplotlib, web
requests with
requests, or
databases).



Project Ideas

Here are some project suggestions based on different levels of difficulty. You can choose any project idea

from this list, or come up with your own idea about something that is interesting to you.

Basic Ideas

Task Manager: A simple
app to add, remove, and
view tasks.

Budget Tracker: Track
income and expenses,
and display a summary.

Simple Library System:
Manage a list of books
(add, remove, search).

Medium Ideas

To-Do List with
Categories: Add, remove,
and categorize tasks,
store them in CSV files.

Contact Book: Store,
search, and delete
contacts from a CSV file.

Student Grades
Management: Store
grades and calculate
averages or
classifications.

Expert Ideas

Weather App: Fetch
weather data from an API
and display it.

Personal Finance Tracker
with Reports: Track
expenses and generate
visual reports.

Inventory Management
System: Track products,
sales, and stock levels,
using a database for
persistence.



Assessment Criteria

Your project will be assessed based on the following:

40% 30%

Code Quality

Is the code clean,

Functionality

Does the project meet
the requirements and modular, and well-

work as expected? commented?

incorporate advanced

features?

20%

Creativity &
Complexity

How original or complex
is the project? Does it

-
10%

Documentation

Is the project properly
documented with clear
instructions and
explanations?

(D Expert projects may receive higher points for creativity and complexity due to their advanced
techniques, but they will not automatically earn a higher overall score if the basic criteria are not

met. The grading will focus on how well each project addresses the course objectives and

demonstrates mastery of the concepts, regardless of the project's difficulty level.

If a basic project is executed very well, it can still receive the maximum score.

Submission Guidelines

01 02

03

Submit via Email Include All Relevant Files

Include all relevant files: Python
scripts, README.md, and any
additional files (e.g., test cases,
data files).

Submit your project via email to
tom.lotz@outlook.com. Your email

needs to mention your Name as on
the course list, as well as your
student ID number.

Document Your Project

Make sure your project is well-
documented, including how to run
it, its features, and any
assumptions made.


mailto:tom.lotz@outlook.com
http://readme.md/

