
Python Programming End of Term 
Project

Apply Python skills to design a functional program. Demonstrate mastery of core concepts including data 
structures, control flow, functions, OOP, and file handling.

Key Points

Objective
Apply Python skills to design a functional 
program. Demonstrate mastery of core 
concepts (data structures, control flow, 
functions, OOP, file handling).

Requirements
Individual project, Deadline: Jan 9, 2026.

Choose Basic, Medium, or Expert level based 
on your skill.

Assessment
Functionality (40%), Code Quality (30%), 
Creativity (20%), Documentation (10%).

Submission
Email: tom.lotz@outlook.com, include Name 
and Student ID. Attach all relevant files.

Project Objective

The year-end project is designed to assess your ability to apply the Python programming skills you've learned 
throughout the semester. You will be tasked with designing and implementing a functional Python program 
that solves a real-world problem or fulfills a specific use case. The project will require you to demonstrate 
mastery of core Python concepts, including data structures, control flow, functions, object-oriented 
programming (OOP), and file handling.

The project allows for flexibility in terms of complexity. You can choose to focus on a basic implementation, 
develop a more complex system with added features, or challenge yourself with an advanced solution. 
Regardless of the level, your project should showcase your ability to write clean, well-organized, and modular 
Python code that is both efficient and easy to maintain.

mailto:tom.lotz@outlook.com


Requirements

Individual Work

Each student has to submit their own project, no 
team work.

Deadline

January 9, 2026

Three Levels

The project has three levels of requirements: 
Basic, Medium, and Expert, allowing students to 
choose the complexity based on their current skill 
level.

Basic Level: Covers essential Python concepts such as syntax, data types, and control flow. This level 
ensures a solid foundation for all students.

Medium Level: For students comfortable with the basics, adding more advanced features like file 
handling and object-oriented programming to enhance your project.

Expert Level: For students looking for a challenge, focusing on complex systems, external libraries, and 
advanced techniques.

Choose the level that matches your abilities, but feel free to start with a basic project and add more 
complexity as you improve.



Comprehensive Project Requirements by Level

Concept/Task Basic Medium Expert

Python Syntax & Data 
Types

Use basic data types 
(integers, strings, 
booleans) and work 
with lists, dictionaries, 
and tuples.

Use nested data 
structures like lists of 
dictionaries or 
dictionaries of lists.

Work with complex 
data structures and 
external libraries like 
pandas for data 
manipulation or 
integration with APIs.

Control Flow & Loops Implement basic 
conditional logic (if, 
else) and loops (for, 
while).

Use loops and 
conditions to create 
interactive programs. 
Implement flow 
control (break, 
continue).

Handle complex 
scenarios with multi-
layered loops and 
conditional logic, 
such as nested loops 
and exception 
handling.

Functions Define and use basic 
functions.

Organize code into 
well-defined 
functions, handle 
parameters and 
return values.

Modularize the 
program into 
reusable, testable 
functions. Include 
comprehensive error 
handling and 
validation.

File Handling Not applicable. Handle CSV or JSON 
files. Include basic 
file error handling.

Implement advanced 
file processing with 
structured formats 
(CSV, JSON) or 
integrate with a 
database for CRUD 
operations.

Error Handling Basic error handling 
with try/except for 
general errors.

Implement custom 
exceptions and 
handle errors for user 
inputs.

Advanced exception 
handling, logging, and 
debugging 
techniques. Manage 
error recovery and 
ensure robustness in 
real-world use cases.



Comprehensive Project Requirements by Level

Concept/Task Basic Medium Expert

Object-Oriented 
Programming (OOP)

Create simple classes 
with attributes and 
methods.

Design classes with 
inheritance or 
composition. Use 
classes to model real-
world objects (e.g., 
users, tasks).

Build complex class 
systems with multiple 
levels of inheritance, 
polymorphism, and 
encapsulation. Use 
design patterns for 
better structure and 
scalability.

Modularization & 
Code Structure

Write simple, non-
modular scripts.

Refactor code into 
functions to improve 
readability and 
maintainability.

Organize the code 
into multiple well-
defined modules or 
packages. Ensure 
clear structure and 
proper separation of 
concerns.

User Input & 
Interaction

Handle user input 
through the console.

Build simple 
interactive programs 
with menus or basic 
command-line 
prompts.

Build complex user 
interfaces using 
libraries like Tkinter, 
or implement a GUI 
with interactive 
elements.

Advanced Features Not applicable. Optionally integrate 
libraries or APIs (e.g., 
requests for web 
interaction).

Integrate external 
libraries for added 
functionality (e.g., 
data visualization 
with matplotlib, web 
requests with 
requests, or 
databases).



Project Ideas

Here are some project suggestions based on different levels of difficulty. You can choose any project idea 
from this list, or come up with your own idea about something that is interesting to you.

Basic Ideas
Task Manager: A simple 
app to add, remove, and 
view tasks.

Budget Tracker: Track 
income and expenses, 
and display a summary.

Simple Library System: 
Manage a list of books 
(add, remove, search).

Medium Ideas
To-Do List with 
Categories: Add, remove, 
and categorize tasks, 
store them in CSV files.

Contact Book: Store, 
search, and delete 
contacts from a CSV file.

Student Grades 
Management: Store 
grades and calculate 
averages or 
classifications.

Expert Ideas
Weather App: Fetch 
weather data from an API 
and display it.

Personal Finance Tracker 
with Reports: Track 
expenses and generate 
visual reports.

Inventory Management 
System: Track products, 
sales, and stock levels, 
using a database for 
persistence.



Assessment Criteria

Your project will be assessed based on the following:

40%

Functionality
Does the project meet 
the requirements and 

work as expected?

30%

Code Quality
Is the code clean, 
modular, and well-

commented?

20%

Creativity & 
Complexity

How original or complex 
is the project? Does it 
incorporate advanced 

features?

10%

Documentation
Is the project properly 

documented with clear 
instructions and 

explanations?

Expert projects may receive higher points for creativity and complexity due to their advanced 
techniques, but they will not automatically earn a higher overall score if the basic criteria are not 
met. The grading will focus on how well each project addresses the course objectives and 
demonstrates mastery of the concepts, regardless of the project's difficulty level.

If a basic project is executed very well, it can still receive the maximum score.

Submission Guidelines

01

Submit via Email
Submit your project via email to 
tom.lotz@outlook.com. Your email 
needs to mention your Name as on 
the course list, as well as your 
student ID number.

02

Include All Relevant Files
Include all relevant files: Python 
scripts, README.md, and any 
additional files (e.g., test cases, 
data files).

03

Document Your Project
Make sure your project is well-
documented, including how to run 
it, its features, and any 
assumptions made.

mailto:tom.lotz@outlook.com
http://readme.md/

