
Session 4: Persistence and Polish
Session 4 implements saving and loading game state, statistics tracking, and refinement of upgrade
systems and the user interface. These features are essential for a complete application.

Game Persistence
Implement saving of complete
shop state to JSON files and
loading of previous games,
enabling continuation from any
point.

Analytics
Track performance metrics
across all days, identify trends,
and analyze item popularity.

Polish
Implement error handling,
improve code organization,
enhance displays, and add
quality-of-life features.

Saving and loading involves state serialization. This includes defining the game's state, converting
complex objects into JSON-compatible dictionaries, and reconstructing objects upon loading. These
tasks cover software engineering concepts such as serialization, data integrity, and state management.

Statistics track gameplay data. For example, daily earnings can be compared to an average, top-selling
items can be identified, and conversion rates can be analyzed following a manager upgrade. This
provides feedback on progression.

Tasks 1-3: Statistics and Cost Systems

Task 1: Daily Statistics Storage
Create a list that accumulates summary data for
each completed day. After every business day,
append a dictionary or object containing:

Day number

Total customers

Successful sales

Revenue earned

Optional: items sold breakdown

This historical data enables trend analysis and
lifetime statistics.

Task 2: Detailed Sales Log
Beyond daily summaries, log every individual sale
for granular analysis. Each entry records:

Day it occurred

Item sold

Selling price

Optional: customer budget, time of day

This detailed log provides data to analyze
revenue by item or average sale price.

100%

Complete History
Every transaction permanently
recorded for analysis

75%

Daily Summaries
Overview of each day's
performance

50%

Trend Analysis
Compare performance across
days to identify patterns

Task 3: Unified Upgrade Cost Formula

Replace any hardcoded upgrade costs with a consistent exponential formula:

cost = base_cost × growth_factorcurrent_level

Define base costs and growth factors for each upgrade type:

Coffee Machine: base=$10, growth=1.5

Manager: base=$15, growth=1.5

Decoration: base=$8, growth=1.4

Update your status screen to show next upgrade costs using this formula. This consistency
provides predictable and balanceable economic progression.

For extended implementations, consider creating Record classes. A SaleRecord object encapsulates a
single transaction, while a DailyRecord object summarizes a day. These objects can have methods such
as get_revenue(), get_items_sold(), or display() for managing historical data. The Shop might maintain
both a sales_log list of SaleRecords and a daily_stats list of DailyRecords.

Tasks 4-5: Saving and Loading State
Implementing save/load teaches concepts about data serialization, file I/O, and state reconstruction.

State
Capture
Collect all
relevant
game

state into
a

serializabl
e

structure

Serializ
ation

Convert
state into

JSON
format

File
Writing

Save
JSON to
disk with

appropriat
e filename

File
Reading

Load
JSON

from disk
when

requested

Deserial
ization

Parse
JSON

back into
game
state

State
Restorat

ion
Apply
loaded
data to

recreate
previous

game

{
 "money": 156.40,
 "inventory": {
 "coffee": 12,
 "tea": 8,
 "pastry": 5
 },
 "base_prices": {...},
 "manager_level": 3,
 "coffee_machine_level": 2,
 "decoration_level": 1,
 "day": 8,
 "daily_stats": [...],
 "sales_log": [...]
}

Task 4: Save Function
Create a save function that captures complete
game state:

Use Python's json module to write this dictionary
to a file like "shop_save.json".

Task 5: Load Function
Create the complementary load function that:

Opens the save file1.

Parses JSON into a Python dictionary2.

Recreates all game variables from the loaded
data

3.

Validates data is sensible (optional)4.

Confirms successful load5.

Handle errors gracefully, such as when the file
does not exist or contains corrupted JSON.

For Normal implementations, save and load functions work with global variables or pass the entire state
structure. For Extended implementations, a Shop class can have to_dict() and from_dict(data) methods,
plus save(filename) and load(filename) wrappers. The to_dict method converts attributes to JSON-
compatible types, while from_dict reconstructs the object from a dictionary.

Serialization Challenges

Python's json module handles basic types (int, float, str, list, dict) but not custom objects.
Extended learners must convert custom objects into dictionaries before saving. Consider
implementing to_dict() methods on classes for serialization. When loading, logic is needed to
recognize dictionary representations of objects and reconstruct the appropriate object.

Tasks 6-10: Additional Features
Task 6 integrates save/load into your menu system. Add "Save game" and "Load game" options that call
your serialization functions. Consider allowing multiple save files, auto-saving after each day, or
prompting before overwriting existing saves.

15
Days Played

Total simulation runtime
tracked

$1,247
Lifetime Revenue
Cumulative earnings

across all days

87%
Best Day

Conversion
Highest sale success

rate achieved

Coffee
Top Seller

Most frequently
purchased item

Task 7 (Optional) adds analytics. Create functions that compute aggregate statistics across all recorded
days: total revenue, total customers served, total sales, best day, worst day, most popular item, average
daily revenue. These lifetime stats provide an overview of simulation performance.

Task 8: Error Handling
(Extended)
Add try/except blocks around operations that
may fail:

File operations (FileNotFoundError,
JSONDecodeError)

User input (ValueError for invalid numbers)

Calculations (ZeroDivisionError in analytics)

Implement error handling to prevent crashes and
provide messages to the user.

Task 9: Code Organization
Normal: Group related functions, add docstrings,
ensure clear variable names.

Extended: Split code into multiple files:

shop.py - Shop class

customer.py - Customer class

upgrades.py - Upgrade classes

main.py - Run simulation

Task 10 enhances the status display. Include upgrade levels with their effects, next upgrade costs,
lifetime statistics summary, and current day context. Consider adding ASCII art borders, color (if your
terminal supports it), or formatted tables for presentation.

Project Completion

This project demonstrates concepts such as variables, functions, loops, dictionaries, file I/O,
and optionally object-oriented programming. The shop simulation is a functional game with
persistent state. This project covers course content and provides a foundation for individual
final projects. The skills developed4state management, transaction processing, serialization,
object design4are applicable to various applications.

Session 4 Deliverables
By the end of Session 4, the simulation should include:

Normal Deliverables:

Daily statistics

Simple sales log (optional but encouraged)

Unified upgrade cost formula

Save game state to JSON

Load game state from JSON

Menu options to save and load

Clean status screen including upgrades and
next costs

A fully working multi-day simulation loop

Extended Deliverables (Optional):

A Shop class with: run_business_day(),
run_simulation(), to_dict() + from_dict(), save()
+ load()

An Upgrade class hierarchy

A Customer class (and possibly subclasses)

A SaleRecord and/or DailyRecord class

Analytics methods: revenue by day, best day,
popular items, conversion rate

Error handling for bad input and file
operations

A modular file structure (multiple .py files)

