Session 4: Persistence and Polish

Session 4 implements saving and loading game state, statistics tracking, and refinement of upgrade
systems and the user interface. These features are essential for a complete application.

Game Persistence Analytics Polish

Implement saving of complete Track performance metrics Implement error handling,
shop state to JSON files and across all days, identify trends, improve code organization,
loading of previous games, and analyze item popularity. enhance displays, and add
enabling continuation from any quality-of-life features.
point.

Saving and loading involves state serialization. This includes defining the game's state, converting
complex objects into JSON-compatible dictionaries, and reconstructing objects upon loading. These
tasks cover software engineering concepts such as serialization, data integrity, and state management.

Statistics track gameplay data. For example, daily earnings can be compared to an average, top-selling
items can be identified, and conversion rates can be analyzed following a manager upgrade. This
provides feedback on progression.

Tasks 1-3: Statistics and Cost Systems

Task 1: Daily Statistics Storage Task 2: Detailed Sales Log

Create a list that accumulates summary data for Beyond daily summaries, log every individual sale
each completed day. After every business day, for granular analysis. Each entry records:
append a dictionary or object containing:)

e Day it occurred

e Day number e |tem sold

e Total customers « Selling price

* Successful sales Optional: customer budget, time of day

¢ Revenue earned . . .

_ . This detailed log provides data to analyze
* Optional: items sold breakdown revenue by item or average sale price.
This historical data enables trend analysis and

lifetime statistics.

G 007 GEEEEED 757 GEEED 50%
Complete History Daily Summaries Trend Analysis

Every transaction permanently Overview of each day's Compare performance across
recorded for analysis performance days to identify patterns

[J Task 3: Unified Upgrade Cost Formula
Replace any hardcoded upgrade costs with a consistent exponential formula:
cost = base_cost x growth_factorcurrent_level
Define base costs and growth factors for each upgrade type:

» Coffee Machine: base=$10, growth=1.5
* Manager: base=$15, growth=1.5

» Decoration: base=$8, growth=1.4

Update your status screen to show next upgrade costs using this formula. This consistency
provides predictable and balanceable economic progression.

For extended implementations, consider creating Record classes. A SaleRecord object encapsulates a
single transaction, while a DailyRecord object summarizes a day. These objects can have methods such
as get_revenue(), get_items_sold(), or display() for managing historical data. The Shop might maintain
both a sales_log list of SaleRecords and a daily_stats list of DailyRecords.

Tasks 4-5: Saving and Loading State

Implementing save/load teaches concepts about data serialization, file I/O, and state reconstruction.

[[[
State Serializ File
Capture ation Writing
Collect all Convert Save
relevant state into JSON to
game JSON disk with
state into format appropriat
a e filename
serializabl
e
structure

Task 4: Save Function

Create a save function that captures complete
game state:

{
"money": 156.40,

"inventory": {

"coffee": 12,

"tea": 8,

"pastry": 5
f
"base_prices": {...},
"manager_level™: 3,
"coffee_machine_level": 2,
"decoration_level": 1,
"day": 8,
"daily_stats": [...],
"sales_log": [...]

Use Python's json module to write this dictionary
to a file like "shop_save.json".

[[[
File Deserial State
Reading ization Restorat
Load Parse on
JSON JSON Apply
from disk back into loaded
when game data to
requested state recreate

previous
game

Task 5: Load Function

Create the complementary load function that:

1. Opens the save file
2. Parses JSON into a Python dictionary

3. Recreates all game variables from the loaded
data

4. Validates data is sensible (optional)
5. Confirms successful load

Handle errors gracefully, such as when the file
does not exist or contains corrupted JSON.

For Normal implementations, save and load functions work with global variables or pass the entire state
structure. For Extended implementations, a Shop class can have to_dict() and from_dict(data) methods,
plus save(filename) and load(filename) wrappers. The to_dict method converts attributes to JSON-
compatible types, while from_dict reconstructs the object from a dictionary.

[Serialization Challenges

Python's json module handles basic types (int, float, str, list, dict) but not custom objects.
Extended learners must convert custom objects into dictionaries before saving. Consider
implementing to_dict() methods on classes for serialization. When loading, logic is needed to
recognize dictionary representations of objects and reconstruct the appropriate object.

Tasks 6-10: Additional Features

Task 6 integrates save/load into your menu system. Add "Save game" and "Load game" options that call
your serialization functions. Consider allowing multiple save files, auto-saving after each day, or
prompting before overwriting existing saves.

15 $1.247 87% Coffee

Days Played Lifetime Revenue Best Day Top Seller
Total simulation runtime Cumulative earnings Conversion Most frequently
tracked across all days Highest sale success purchased item

rate achieved

Task 7 (Optional) adds analytics. Create functions that compute aggregate statistics across all recorded
days: total revenue, total customers served, total sales, best day, worst day, most popular item, average
daily revenue. These lifetime stats provide an overview of simulation performance.

Task 8: Error Handling Task 9: Code Organization
(Extended) Normal: Group related functions, add docstrings,
Add try/except blocks around operations that ensure clear variable names.

may fail:

Extended: Split code into multiple files:

» File operations (FileNotFoundError,

e shop.py - Shop class
JSONDecodeError)

e customer.py - Customer class
e User input (ValueError for invalid numbers)

e upgrades.py - Upgrade classes
e Calculations (ZeroDivisionError in analytics)

e main.py - Run simulation

Implement error handling to prevent crashes and
provide messages to the user.

Task 10 enhances the status display. Include upgrade levels with their effects, next upgrade costs,
lifetime statistics summary, and current day context. Consider adding ASCII art borders, color (if your
terminal supports it), or formatted tables for presentation.

[J Project Completion

This project demonstrates concepts such as variables, functions, loops, dictionaries, file 1/0O,
and optionally object-oriented programming. The shop simulation is a functional game with
persistent state. This project covers course content and provides a foundation for individual
final projects. The skills developed—state management, transaction processing, serialization,
object design—are applicable to various applications.

Session 4 Deliverables

By the end of Session 4, the simulation should include:

Normal Deliverables: Extended Deliverables (Optional):
e Daily statistics e A Shop class with: run_business_day(),
+ load()

e Unified upgrade cost formula

e AnU de class hi h
e Save game state to JSON N HUpgrade class hierarchy

« Load game state from JSON e A Customer class (and possibly subclasses)

e ASaleR DailyR I
« Menu options to save and load SaleRecord and/or DailyRecord class

¢ Analytics methods: revenue by day, best da
e Clean status screen including upgrades and 4 y cay, Vi

popular items, conversion rate
next costs

e Error handling for bad input and file

e A fully working multi-day simulation loop)
operations

e A modular file structure (multiple .py files)

