
Session 3 Overview: Full Operations and
Growth
Session 3 involves automating the processing of entire business days, handling dozens of customers
sequentially, tracking performance metrics, and implementing upgrade systems that drive long-term
progression.

Daily Operations
Process complete
business days
automatically, looping
through all customers,
executing transactions,
and summarizing
results. Test purchase
logic becomes
production code
handling dozens of
transactions per day.

Performance
Tracking
Count successful sales
versus total customers,
track daily revenue,
identify best-selling
items. These metrics
inform strategic
decisions.

Upgrade Systems
Implement three distinct
upgrade paths4coffee
machines boost
customer count,
manager training
improves prices,
decorations attract more
visitors. Each upgrade
costs money but
provides permanent
benefits.

This session introduces systems thinking4understanding how multiple mechanics interact to create
complexity. Upgrades cost money, which comes from sales, which require inventory, which costs money
to purchase. Balancing spending on upgrades versus inventory is key.

For Extended learners, Session 3 highlights object-oriented design. An Upgrade base class can define
common behavior (cost calculation, level tracking) while subclasses implement specific effects. This
polymorphism facilitates adding new upgrade types.

Tasks 1-2: Processing Complete
Business Days

Task 1: Daily Customer
Generation
Combine customer count and customer
generation functions into a complete daily
customer generation system. This function
determines the number of customers, creates
that number of customer objects, and returns
them as a list for processing.

Normal: Function takes day number, returns list
of customer dicts/tuples

Extended: Shop method returns list of Customer
objects

Task 2: Process All Customers
Implement the automation to process the shop's
operations. Loop through every customer in the
day's list, process their purchase attempt, and
accumulate statistics. Track three key metrics:
total customers, successful sales, and total
revenue earned.

Generate
Create full customer list

Iterate
Process each customer

Accumulate
Track sales and revenue

Summarize
Return daily results

Daily Revenue Mathematics

total_revenue = £ (selling_price for each successful sale)

sales_count = £ (1 for each successful purchase)

conversion_rate = sales_count / total_customers

Example: If 10 customers visit, 7 buy items averaging $3.50 each, then revenue = $24.50 and conversion = 70%

The process_customers function involves batch processing. This requires robust error handling, clear state management, and
reliable tracking. If one customer's purchase fails, the loop must continue processing remaining customers without corruption.

Tasks 3-4: Daily Summary and
Integration
Task 3 creates a reporting system for simulation results. After processing a full day of customers, display
a clear summary of daily activity. The summary provides feedback on performance, identifying issues
such as stock depletion or pricing.

Customer
Traffic
Total visitors and
successful
purchases

Financial
Results
Total revenue
earned, average
sale price

Inventory
Impact
Items sold, items
that ran out of
stock

Performance
Indicators
Conversion rate,
comparison to
previous day
(optional)

%%%%%%%%%%%%%%%%%%%%%

%%%

 DAY 5 RESULTS
%%%%%%%%%%%%%%%%%%%%%

%%%

Customers Today: 12
Successful Sales: 9
Revenue: $27.30
Conversion Rate: 75%

Items Sold:
 Coffee: 5
 Tea: 2
 Pastry: 2

Missed Sales: 3
 (Out of stock: 2)
 (Price too high: 1)

Example Daily Summary Task 4: Full Day Integration
Add a "Run business day" option to your main
menu that orchestrates the complete daily cycle:

Open the store1.

Generate customers2.

Process all customers3.

Display daily summary4.

Close the store5.

Increment day counter6.

This single menu choice executes the entire
business cycle automatically.

Task 4's integration combines existing functions into a cohesive daily cycle. When "Run business day" is selected, the system
generates customers, processes transactions, manages inventory, and displays a summary. This automation streamlines multi-day
simulation execution.

For Extended learners, implement this as a run_business_day() method that encapsulates the entire sequence. The method should
be atomic4if something goes wrong midway, the state shouldn't be corrupted. Consider whether the method should return the daily
summary object for external logging or analysis, or whether summaries should be stored internally in a daily stats list.

Tasks 5-6: The Upgrade System
Upgrades introduce strategic decision-making by allowing investment in permanent improvements.
Players must decide between spending money on inventory or on upgrades.

1
Manager Level
Improves selling prices by 10% per level

2
Coffee Machine
Increases daily customer count

3
Decoration Level
Increases shop appeal, attracting more visitors

4
Future Upgrades
Framework supports adding new upgrade types

Task 5: Upgrade Variables
Create variables for each upgrade level, all
starting at 0:

coffee_machine_level

manager_level (already exists from Session 1)

decoration_level

Extended: Store as Shop attributes or create
Upgrade objects

Task 6: Coffee Machine
Upgrade
Implement the first upgrade function:

Calculate upgrade cost

Check if shop has enough money

Increase coffee_machine_level

Deduct cost from money

Display confirmation

Example cost formula: cost = 10 × 1.5level

Exponential Cost Formula

cost = base_cost × growth_factorcurrent_level

Example with base_cost=10, growth_factor=1.5:

Level 0³1: $10.00, Level 1³2: $15.00

The coffee machine's effect on customer count can be calculated using a formula such as:
base_customers + (coffee_machine_level × 2). This formula adds 2 additional customers per day per
upgrade level.

Tasks 7-8: Manager and Decoration
Upgrades
Task 7 integrates manager level into the upgrade system. The manager level variable and its use in price
calculations exist from Session 1. This task adds the ability to upgrade it by spending money. Each
manager level increases selling prices by 10%, which increases profit margin on sales.

10%

Per-Level Price Increase
Manager level increases selling

price

30%

Level 3 Example
Items sell for 30% more than

base price

50%

Level 5: Doubles Profit
Margin

Level 5 provides a 50% price
increase, doubling profit margin.

Manager Upgrade Impact
Manager level affects all transactions. For 100
items sold per week at $3 base price:

Level 0: $3.00 each = $300 revenue

Level 2: $3.60 each = $360 revenue (+$60)

Level 5: $4.50 each = $450 revenue (+$150)

Percentage increase applies universally.

Decoration Upgrade Effect
Task 8 adds decoration_level to influence
customer count. Customer count is determined
by:

base = 5 + day

coffee_bonus = coffee_machine_level × 2

decoration_bonus = decoration_level × 1

total = base + coffee_bonus +
decoration_bonus

Example Day 10, both at level 3: 15 + 6 + 3 = 24
customers

Create upgrade functions for both manager and decoration. Follow the coffee machine upgrade pattern:
check cost, verify money, increase level, deduct payment, and confirm. Use the exponential cost formula
with different base costs; for example, manager upgrades could use a $15 base, and decoration an $8
base.

Extended: Upgrade Class Hierarchy

Create an Upgrade base class with attributes (name, level, base_cost, growth_factor) and
methods (calculate_cost, apply_upgrade). Implement the following subclasses:

CoffeeMachineUpgrade - modifies customer count calculation

ManagerUpgrade - modifies price calculation

DecorationUpgrade - modifies customer count calculation

Each subclass implements an apply_effect() method to modify the appropriate shop
calculation. This design supports adding new upgrades.

Tasks 9-10: Upgrade Integration
Task 9 makes upgrades accessible by adding menu options for each upgrade type. Your main simulation
loop should offer choices such as "Upgrade coffee machine ($22.50)", "Upgrade manager ($33.75)",
and "Upgrade decoration ($15.00)". Displaying the next upgrade cost in the menu provides necessary
information for upgrade decisions.

1

View
Statu

s

2

Buy
Items

3

Run
Busin

ess
Day

4

Upgra
de

Coffe
e

Machi
ne

5

Upgra
de

Mana
ger

6

Upgra
de

Decor
ation

7

Quit

uuuuuuuuuuuuuuuuuuuuu

uuuuuu

 DAY 8
uuuuuuuuuuuuuuuuuuuuu

uuuuuu

Money: $156.40
Store: CLOSED

UPGRADES:
=% Manager: Level 3
' (Prices +30%)
=% Coffee Machine: Level 2
' (+4 customers)
5% Decoration: Level 1
 (+1 customer)

INVENTORY:
Coffee: 12 units
Tea: 8 units
P t 5 it

Task 10: Enhanced Status
Display
Update your status screen to show all upgrade
levels. Consider adding explanatory text about
what each upgrade does.

Example Enhanced Status

For Extended learners, Task 9 can use a
"Manage Upgrades" submenu that dynamically
lists available upgrades. The Shop could maintain
a list of Upgrade objects, and the menu iterates
through them displaying name, current level, next
cost, and effect description.

Task 10's status display should call methods on
Upgrade objects to retrieve their descriptions.
Each upgrade is responsible for describing itself,
e.g., "Manager Level 3 - Prices +30%" or "Coffee
Machine Level 2 - Adds 4 daily customers". This
separation of concerns minimizes changes
required in the status display code when new
upgrade types are added.

Session 3 Deliverables

Automated Operations
Complete daily processing with customer
generation, transaction loops, and
summarization

Analytics
Daily summaries tracking customers, sales,
revenue, and conversion rates

Upgrade Systems
Three functional upgrade paths with cost
formulas and visible effects

Enhanced Interface
Status screen showing upgrades, menu
options for upgrades, daily summaries

Normal Path Checklist
generate_all_customers() produces complete
daily lists

process_all_customers() loops through and
handles transactions

Daily summary displays customers, sales,
revenue

"Run business day" menu option works end-
to-end

Coffee machine, manager, decoration levels
exist

Upgrade functions implement exponential
cost formula

Upgrade functions check money and update
state

Customer count formula uses coffee machine
and decoration

Price formula uses manager level

Menu has upgrade options

Status screen shows all upgrade levels

Extended Path Checklist
run_business_day() method orchestrates daily
flow

generate_customers_for_day() returns
Customer objects

process_customers() handles Customer
objects

Daily stats stored in shop's internal list

Upgrade base class with cost calculation

CoffeeMachineUpgrade, ManagerUpgrade,
DecorationUpgrade subclasses

Upgrades have apply_effect() or similar
methods

Shop stores list/dict of Upgrade objects

Upgrade costs calculated via upgrade objects

Status screen queries upgrade objects for
display

Clear separation between upgrade logic and
shop logic

Playtesting Your Simulation

Before Session 4, playtest the simulation for 10-15 in-game days. Evaluate upgrade impact,
financial balance, customer counts, and stock management. Playtesting identifies balance
issues and bugs. Adjust formulas, costs, or item prices as needed.

