Session 3 Overview: Full Operations and
Growth

Session 3 involves automating the processing of entire business days, handling dozens of customers
sequentially, tracking performance metrics, and implementing upgrade systems that drive long-term
progression.

Iﬁﬁ Performance /‘ Upgrade Systems

@ Daily Operations
Tracking

Process complete
business days
automatically, looping
through all customers,
executing transactions,
and summarizing
results. Test purchase
logic becomes
production code
handling dozens of
transactions per day.

Count successful sales
versus total customers,
track daily revenue,
identify best-selling
items. These metrics
inform strategic
decisions.

Implement three distinct
upgrade paths—coffee
machines boost
customer count,
manager training
improves prices,
decorations attract more
visitors. Each upgrade
costs money but
provides permanent
benefits.

This session introduces systems thinking—understanding how multiple mechanics interact to create
complexity. Upgrades cost money, which comes from sales, which require inventory, which costs money
to purchase. Balancing spending on upgrades versus inventory is key.

For Extended learners, Session 3 highlights object-oriented design. An Upgrade base class can define
common behavior (cost calculation, level tracking) while subclasses implement specific effects. This
polymorphism facilitates adding new upgrade types.

Tasks 1-2: Processing Complete
Business Days

Task 1: Daily Customer Task 2: Process All Customers
Generation Implement the automation to process the shop's
Combine customer count and customer operations. Loop through every customer in the
generation functions into a complete daily day's list, process their purchase attempt, and
customer generation system. This function accumulate statistics. Track three key metrics:
determines the number of customers, creates total customers, successful sales, and total

that number of customer objects, and returns revenue earned.

them as a list for processing.

Normal: Function takes day number, returns list
of customer dicts/tuples

Extended: Shop method returns list of Customer

objects
Generate Iterate
Create full customer list Process each customer
f \N
=
Accumulate Summarize
Track sales and revenue Return daily results

@ Daily Revenue Mathematics
total_revenue = X (selling_price for each successful sale)
sales_count = Z (1for each successful purchase)
conversion_rate = sales_count / total_customers

Example: If 10 customers visit, 7 buy items averaging $3.50 each, then revenue = $24.50 and conversion = 70%

The process_customers function involves batch processing. This requires robust error handling, clear state management, and
reliable tracking. If one customer's purchase fails, the loop must continue processing remaining customers without corruption.

Tasks 3-4: Daily Summary and
Integration

Task 3 creates a reporting system for simulation results. After processing a full day of customers, display
a clear summary of daily activity. The summary provides feedback on performance, identifying issues
such as stock depletion or pricing.

Customer Financial Inventory Performance
Traffic Results Impact Indicators
Total visitors and Total revenue ltems sold, items Conversion rate,
successful earned, average that ran out of comparison to
purchases sale price stock previous day
(optional)
Example Daily Summary Task 4: Full Day Integration

Add a "Run business day" option to your main
menu that orchestrates the complete daily cycle:

DAY 5 RESULTS 1. Open the store
2. Generate customers
- 3. Process all customers
Customers Today: 12 4. Display daily summary
Successful Sales: 9 5. Close the store
Revenue: $27.30 6. Increment day counter

Conversion Rate: 75%
This single menu choice executes the entire

Items Sold: business cycle automatically.

Coffee: 5
Tea: 2
Pastry: 2

Missed Sales: 3
(Out of stock: 2)
(Price too high: 1)

Task 4's integration combines existing functions into a cohesive daily cycle. When "Run business day" is selected, the system
generates customers, processes transactions, manages inventory, and displays a summary. This automation streamlines multi-day
simulation execution.

For Extended learners, implement this as a run_business_day() method that encapsulates the entire sequence. The method should
be atomic—if something goes wrong midway, the state shouldn't be corrupted. Consider whether the method should return the daily

crimmarv obhiect for external loaadina or analvecie or whether ciimmariec chotild be etored internallv in 2 dailv etate liet

Tasks 5-6: The Upgrade System

Upgrades introduce strategic decision-making by allowing investment in permanent improvements.
Players must decide between spending money on inventory or on upgrades.

Manager Level

1 Improves selling prices by 10% per level

Coffee Machine

2
Increases daily customer count
3 Decoration Level
Increases shop appeal, attracting more visitors
h Future Upgrades
Framework supports adding new upgrade types

Task 5: Upgrade Variables Task 6: Coffee Machine
Create variables for each upgrade level, all Upgrade

starting at 0: Implement the first upgrade function:

* coffee_machine_level » Calculate upgrade cost

e manager_level (already exists from Session 1) e Check if shop has enough money

* decoration_level e Increase coffee_machine_level

Extended: Store as Shop attributes or create ¢ Deduct cost from money

Upgrade objects ¢ Display confirmation

Example cost formula: cost = 10 x 1.5level

[0 Exponential Cost Formula
cost = base_cost x growth_factorcurrent_level
Example with base_cost=10, growth_factor=1.5:

Level 0->1: $10.00, Level 1-2: $15.00

The coffee machine's effect on customer count can be calculated using a formula such as:

base_customers + (coffee_machine_level x 2). This formula adds 2 additional customers per day per
upgrade level.

Tasks 7-8: Manager and Decoration

Upgrades

Task 7 integrates manager level into the upgrade system. The manager level variable and its use in price

calculations exist from Session 1. This task adds the ability to upgrade it by spending money. Each

manager level increases selling prices by 10%, which increases profit margin on sales.

my

10%

Per-Level Price Increase

Manager level increases selling

30%

Level 3 Example

Iltems sell for 30% more than

90%

Level 5: Doubles Profit
Margin

price base price Level 5 provides a 50% price
increase, doubling profit margin.
Manager Upgrade Impact Decoration Upgrade Effect

Manager level affects all transactions. For 100
items sold per week at $3 base price:

e Level 0: $3.00 each = $300 revenue
e Level 2: $3.60 each = $360 revenue (+$60)
e Level 5: $4.50 each = $450 revenue (+$150)

Percentage increase applies universally.

Task 8 adds decoration_level to influence
customer count. Customer count is determined

by:

base =5 + day

coffee_bonus = coffee_machine_level x 2
decoration_bonus = decoration_level x 1

total = base + coffee_bonus +
decoration_bonus

Example Day 10, both at level 3:15 + 6 + 3 = 24
customers

Create upgrade functions for both manager and decoration. Follow the coffee machine upgrade pattern:

check cost, verify money, increase level, deduct payment, and confirm. Use the exponential cost formula
with different base costs; for example, manager upgrades could use a $15 base, and decoration an $8

base.

O

Extended: Upgrade Class Hierarchy

Create an Upgrade base class with attributes (name, level, base_cost, growth_factor) and
methods (calculate_cost, apply_upgrade). Implement the following subclasses:

e CoffeeMachineUpgrade - modifies customer count calculation

¢ ManagerUpgrade - modifies price calculation

e DecorationUpgrade - modifies customer count calculation

Each subclass implements an apply_effect() method to modify the appropriate shop
calculation. This design supports adding new upgrades.

Tasks 9-10: Upgrade Integration

Task 9 makes upgrades accessible by adding menu options for each upgrade type. Your main simulation
loop should offer choices such as "Upgrade coffee machine ($22.50)", "Upgrade manager ($33.75)",
and "Upgrade decoration ($15.00)". Displaying the next upgrade cost in the menu provides necessary

information for upgrade decisions.

1 2 3
View Buy Run
Statu Items Busin

s ess

Day

Task 10: Enhanced Status
Display

Update your status screen to show all upgrade
levels. Consider adding explanatory text about
what each upgrade does.

Example Enhanced Status

DAY 8

Money: $156.40
Store: CLOSED

UPGRADES:
— Manager: Level 3
| (Prices +30%)
[Coffee Machine: Level 2
| (+4 customers)
— Decoration: Level 1
(+1 customer)

INVENTORY:
Coffee: 12 units
Tea: 8 units

5 6 7
Upgra Upgra Upgra Quit
de de
Coffe Mana Decor
ger ation

Machi

For Extended learners, Task 9 can use a
"Manage Upgrades" submenu that dynamically
lists available upgrades. The Shop could maintain
a list of Upgrade objects, and the menu iterates
through them displaying name, current level, next
cost, and effect description.

Task 10's status display should call methods on
Upgrade objects to retrieve their descriptions.
Each upgrade is responsible for describing itself,
e.g., "Manager Level 3 - Prices +30%" or "Coffee
Machine Level 2 - Adds 4 daily customers". This
separation of concerns minimizes changes
required in the status display code when new
upgrade types are added.

Session 3 Deliverables

Automated Operations

Complete daily processing with customer
generation, transaction loops, and
summarization

Upgrade Systems

Three functional upgrade paths with cost
formulas and visible effects

Normal Path Checklist

generate_all_customers() produces complete
daily lists

process_all_customers() loops through and
handles transactions

Daily summary displays customers, sales,
revenue

"Run business day" menu option works end-
to-end

Coffee machine, manager, decoration levels
exist

Upgrade functions implement exponential
cost formula

Upgrade functions check money and update
state

Customer count formula uses coffee machine
and decoration

Price formula uses manager level
Menu has upgrade options

Status screen shows all upgrade levels

[J) Playtesting Your Simulation

Analytics

Daily summaries tracking customers, sales,
revenue, and conversion rates

Enhanced Interface

Status screen showing upgrades, menu
options for upgrades, daily summaries

Extended Path Checklist

run_business_day() method orchestrates daily
flow

generate_customers_for_day() returns
Customer objects

process_customers() handles Customer
objects

Daily stats stored in shop's internal list
Upgrade base class with cost calculation

CoffeeMachineUpgrade, ManagerUpgrade,
DecorationUpgrade subclasses

Upgrades have apply_effect() or similar
methods

Shop stores list/dict of Upgrade objects
Upgrade costs calculated via upgrade objects

Status screen queries upgrade objects for
display

Clear separation between upgrade logic and
shop logic

Before Session 4, playtest the simulation for 10-15 in-game days. Evaluate upgrade impact,
financial balance, customer counts, and stock management. Playtesting identifies balance
issues and bugs. Adjust formulas, costs, or item prices as needed.

