Session 2 Overview: Time and Customer
Integration

Session 2 integrates time and customer generation into the shop infrastructure. This involves
implementing a day counter, creating a main simulation loop that advances daily, and generating
customers with specific budgets and purchasing criteria. This session transitions from component
construction to system integration.

Store State 1
Add open/closed status and control
mechanisms
2 Time System
Implement day counter and progression
Main Loop 3
Create the structure that runs the
simulation
4 Customer Generation
Build systems to create customers with
budgets and purchasing criteria
First Transactions 5

Test customer purchases before full
automation

The main loop created this session manages the application's daily flow. It controls the progression from
day to day, presents options to the user, processes actions, and advances the simulation state.

For Extended learners, this session introduces object lifecycles and state machines. A Shop object
transitions between states (closed = open = processing - closed). Understanding these transitions
supports designing methods that enforce valid state changes and prevent invalid ones.

Tasks 1-2: Store Open/Closed State

Task 1: The State Variable Task 2: Control Functions
Create a boolean variable representing whether Implement two functions to change the store
your shop is currently open. This flag controls state:

when customers can be processed, determines

. . . e open_store() - Sets is_open to True
valid actions, and separates preparation from pen- 0 P

business hours. e close_store() - Sets is_open to False

Add confirmation messages such as "The shop is
now open for business!" or "The shop has closed

Normal: Create is_open = False as a standalone

variable.
for the day."
Extended: Add self.is_open = False to your Shop

class attributes.

1/2

Two States State Rules

Define shop operational status Supports future complex state rules

Dedicated functions (or methods) for state changes allow for future logic additions such as prerequisite
checks, event logging, or side effects, without modifying code throughout the program. Calling
open_store() expresses intent for a state change rather than directly manipulating a boolean.

[0 Extended Design

Considerations for extended learners include: allowing store opening with empty inventory,
requiring stock purchase before opening, or triggering cleanup/calculations upon closing.
These behaviors can be integrated into methods via encapsulation without affecting other
code.

Tasks 3-4: Day Counter and Status
Screen

Task 3: Create a day counter variable starting at 1. Each complete business cycle (open, serve

customers, close) should increment this counter. The day number influences customer count, difficulty,
and progression systems.

@

]

Day Tracking Progression Scaling Milestone Markers
Integer starting at 1, Formulas use day number to Tracks player progress.
increments after each increase difficulty.

business day.

Task 4: Update your status display to include time-based information. Modify the status screen to show
the current day alongside money, inventory, manager level, and store state (open/closed). This provides
a complete picture of the simulation's current state.

Status Display Elements Example Output

e Day number (bold or prominent)

e Store state (Open/Closed)
e Current money DAY 5

e Complete inventory listing

e Manager level
Status: OPEN
Money: $47.50

Manager Level: 2

e Any other relevant context

Inventory:
Coffee: 8 units
Tea: 3 units
Pastry: 5 units

Use visual separators, alignment, and spacing to make the status screen easy to scan. This screen is
frequently accessed. Extended learners should consider whether this display method might accept
parameters for different "views" (summary vs. detailed) or if separate display methods would be cleaner.

Task 5: The Main Simulation Loop

This loop integrates functions into a cohesive simulation. It controls program flow, presents choices,

processes actions, and maintains continuous simulation.

Display Status

Show current state at loop
start

Update State

Modify money, inventory, day,

etc.

Example Menu Options

—_—

N o oo W N

View status

Buy items

Open store (when closed)
Close store (when open)
Advance to next day
Save game (later)

Quit simulation

CJ

"
o/

Present Menu
T List available actions
Get Choice
-2 Accept user decision
@ Process Action
N©O)

Execute selected function

Loop Structure

while True:
show_status()
display_menu()
choice = get_input()

if choice =="1":
View status

elif choice =="2":
Buy items

elif choice =="quit™:
break

update_day_if_needed()

The loop must handle invalid input correctly, provide clear feedback, and maintain logical state transitions. For example, the store

cannot open if already open; the day should not advance without closing the store first. These rules create coherent simulation

behavior and demonstrate state validation.

[J Extended Architecture: The run() Method

For Extended learners, the main loop becomes a Shop method like run_simulation(). This
method contains the while loop and delegates to other Shop methods for each action. This
approach encapsulates the simulation control flow within the object that owns the state.
External code creates a shop and calls shop.run()—all further operations happen internally.

Task 6: Determining Customer Count

The formula for determining daily customer count affects difficulty progression, revenue potential, and
strategic decision-making.

Fixed Count Linear Growth

customers =5 customers = 3 + day

Simple and predictable, suitable for testing Provides a steady, predictable increase (e.g.,
and early development. Balancing is Day 1: 4 customers, Day 10: 13 customers).

straightforward.

Exponential Scaling Random Range

customers =5 + floor(day x 1.5) customers = random(3, 8)

Results in an accelerating challenge. Early Introduces uncertainty. Players must prepare
days are manageable, while later days show for variation. This is more difficult to balance
significant growth. This approach can create a and strategize for.

need for system upgrades.

Create a function that returns the customer count for the current day. This function should take the day
number as input (Normal) or access self.day (Extended). Select a formula; adjustments can be made
during playtesting. The objective is to establish a mechanism for variable customer counts.

[Mathematics of Customer Formulas
Linear: customers = base + (day x growth_rate)
Exponential: customers = base + floor(day * exponent)
Random range: customers = random(min, max)

Hybrid: customers = (3 + day) + random(-2, 2) combines growth with variation

For Extended learners, consider how customer count calculation should integrate with upgrades. If
decoration level or reputation (future features) affect foot traffic, determine whether this function
accepts additional parameters or reads upgrade levels from the Shop object. These architectural
decisions influence system extensibility.

Tasks 7-8: Customer Generation

Task 7 requires creating a representation for a single customer. Each customer needs two properties: a
wish (the item they want) and a budget (the amount they will pay). The data structure chosen affects
interaction with customer data.

87 S %
Dictionary Approach Tuple Approach Class Approach
customer = {"wish": customer = ("coffee", 5) (Extended)
coffee", "budget": 5} Compact. Requires index- customer =")
Flexible. Properties can be based access. Customer(*coffee", 5)
added or modified. Structured. Allows
associated methods (e.qg.,
can_afford(),
preferred_item()).
Task 7: Single Customer Task 8: All Daily Customers
Write a function that generates one customer Write a function that creates the complete
with random properties: customer list for a day:
e Randomly select wish from available items 1. Call the customer count function

e Randomly generate budget (e.g., 2-10) . Loop the determined number of times

2
e Return the customer data structure 3. Generate a customer each iteration
4. Add the customer to a list
5

Return the full list

This list represents the daily queue of visitors.

For Extended learners using a Customer class, consider method placement. Determine whether
customer behaviors are handled by customer methods or shop methods. For example, does a customer
method execute a "buy" action, or does a shop method execute a "sell to" action, where the customer is
an argument?

Tasks 9-10: Test Customer Interaction

Task 9 implements the transaction logic for a customer's purchase attempt. This function integrates
inventory checking, price calculation, budget validation, and state updates.

Extract Customer Data

Read customer's wish and budget

Check Availability

Verify item is in stock (quantity > 0)

Calculate Price

Use your selling price formula: base x (1+ manager x 0.1)

Check Budget

Compare customer budget to selling price

Execute or Decline

If valid: reduce inventory, increase money. If not: no changes.

[J Transaction Mathematics
selling_price = base_prices[item] x (1+ manager_level x 0.1)
sale_valid = (inventory[item] > 0) AND (budget = selling_price)
If valid:
inventory[item] = inventory[item] - 1

money = money + selling_price

Task 9: Purchase Logic

Create a function that accepts a customer and
processes their purchase attempt. Return a
boolean (True/False) indicating success, or return
transaction details (item, price, success) for

logging.

Failure handling: Decide if messages like "Out of
coffeel" or "Customer couldn't afford tea" should
be printed. Such feedback assists with
debugging.

Task 10: Testing Integration

Add a menu option "Test customer purchase"
that:

1.

Generates one random customer.

. Displays customer's wish and budget.
. Processes the purchase.

2
3
4.
5

Shows the result.

Displays updated shop status.

This verifies transaction logic before automated

daily processing.

Testing individual customer transactions prior to processing entire days is required. Debugging a single

transaction is simpler than diagnosing issues within a batch. Use clear print statements to show each
step: "Customer wants coffee", "Coffee sells for $2.60", "Customer has $3.00", "Sale successful!". This

diagnostic output is critical for problem resolution.

For Extended implementations, consider the use of return values versus side effects. A

process_customer(customer) method should clearly indicate its effects through return values or

exceptions for easier testing and debugging.

Session 2 Deliverables

Session 2 involves implementing time-based simulation components. Functionality must be verified

before proceeding to Session 3.

Time Systems

Store state (open/closed), day counter,
opening/closing functions implemented

Customer Systems

Customer count calculation, single customer
generation, full day customer generation

Normal Path Verification

e is_open boolean tracks store state
e open_store() and close_store() function
e day variable starts at 1and increments

e Status screen shows day, state, money,
inventory, manager level

e Main while loop executes continuously

e Menu offers multiple choices

e determine_customer_count() returns numbers
e generate_customer() creates customer data

e generate_all_customers() returns a list

e process_customer_purchase() updates state

e Test customer option functions end-to-end

Simulation Loop

Main loop displays status, presents menu,
processes choices, maintains state

Transaction Logic

Purchase processing, test interaction
integrated into menu

Extended Path Verification

e Shop class has is_open, day attributes

e open_store() and close_store() are methods

¢ show_status() method displays complete
state

e run_simulation() method contains main loop

e Customer class exists with wish, budget
attributes

e generate_customers_for_day() returns
Customer objects

e process_customer() method handles
Customer objects

e Separation between Shop responsibilities and

Customer data
e Methods use self appropriately

e Design allows for Session 3 expansions

