
Session 2 Overview: Time and Customer
Integration
Session 2 integrates time and customer generation into the shop infrastructure. This involves
implementing a day counter, creating a main simulation loop that advances daily, and generating
customers with specific budgets and purchasing criteria. This session transitions from component
construction to system integration.

1Store State
Add open/closed status and control

mechanisms

2 Time System
Implement day counter and progression

3Main Loop
Create the structure that runs the

simulation
4 Customer Generation

Build systems to create customers with
budgets and purchasing criteria

5First Transactions
Test customer purchases before full

automation

The main loop created this session manages the application's daily flow. It controls the progression from
day to day, presents options to the user, processes actions, and advances the simulation state.

For Extended learners, this session introduces object lifecycles and state machines. A Shop object
transitions between states (closed ³ open ³ processing ³ closed). Understanding these transitions
supports designing methods that enforce valid state changes and prevent invalid ones.

Tasks 1-2: Store Open/Closed State

Task 1: The State Variable
Create a boolean variable representing whether
your shop is currently open. This flag controls
when customers can be processed, determines
valid actions, and separates preparation from
business hours.

Normal: Create is_open = False as a standalone
variable.

Extended: Add self.is_open = False to your Shop
class attributes.

Task 2: Control Functions
Implement two functions to change the store
state:

open_store() - Sets is_open to True

close_store() - Sets is_open to False

Add confirmation messages such as "The shop is
now open for business!" or "The shop has closed
for the day."

1/2

Two States
Define shop operational status

100%

State Rules
Supports future complex state rules

Dedicated functions (or methods) for state changes allow for future logic additions such as prerequisite
checks, event logging, or side effects, without modifying code throughout the program. Calling
open_store() expresses intent for a state change rather than directly manipulating a boolean.

Extended Design

Considerations for extended learners include: allowing store opening with empty inventory,
requiring stock purchase before opening, or triggering cleanup/calculations upon closing.
These behaviors can be integrated into methods via encapsulation without affecting other
code.

Tasks 3-4: Day Counter and Status
Screen
Task 3: Create a day counter variable starting at 1. Each complete business cycle (open, serve
customers, close) should increment this counter. The day number influences customer count, difficulty,
and progression systems.

Day Tracking
Integer starting at 1,
increments after each
business day.

Progression Scaling
Formulas use day number to
increase difficulty.

Milestone Markers
Tracks player progress.

Task 4: Update your status display to include time-based information. Modify the status screen to show
the current day alongside money, inventory, manager level, and store state (open/closed). This provides
a complete picture of the simulation's current state.

Status Display Elements

Day number (bold or prominent)

Store state (Open/Closed)

Current money

Complete inventory listing

Manager level

Any other relevant context

uuuuuuuuuuuuuuuuuuuuu

uu

 DAY 5
uuuuuuuuuuuuuuuuuuuuu

uu

Status: OPEN
Money: $47.50
Manager Level: 2

Inventory:
 Coffee: 8 units
 Tea: 3 units
 Pastry: 5 units

Example Output

Use visual separators, alignment, and spacing to make the status screen easy to scan. This screen is
frequently accessed. Extended learners should consider whether this display method might accept
parameters for different "views" (summary vs. detailed) or if separate display methods would be cleaner.

Task 5: The Main Simulation Loop
This loop integrates functions into a cohesive simulation. It controls program flow, presents choices,
processes actions, and maintains continuous simulation.

Example Menu Options
View status1.

Buy items2.

Open store (when closed)3.

Close store (when open)4.

Advance to next day5.

Save game (later)6.

Quit simulation7.

while True:
 show_status()
 display_menu()
 choice = get_input()

 if choice == "1":
 # View status
 elif choice == "2":
 # Buy items
 ...
 elif choice == "quit":
 break

 update_day_if_needed()

Loop Structure

The loop must handle invalid input correctly, provide clear feedback, and maintain logical state transitions. For example, the store
cannot open if already open; the day should not advance without closing the store first. These rules create coherent simulation
behavior and demonstrate state validation.

Extended Architecture: The run() Method

For Extended learners, the main loop becomes a Shop method like run_simulation(). This
method contains the while loop and delegates to other Shop methods for each action. This
approach encapsulates the simulation control flow within the object that owns the state.
External code creates a shop and calls shop.run()4all further operations happen internally.

Display Status
Show current state at loop

start

Present Menu
List available actions

Get Choice
Accept user decision

Process Action
Execute selected function

Update State
Modify money, inventory, day,

etc.

Task 6: Determining Customer Count
The formula for determining daily customer count affects difficulty progression, revenue potential, and
strategic decision-making.

Fixed Count
customers = 5

Simple and predictable, suitable for testing
and early development. Balancing is
straightforward.

Linear Growth
customers = 3 + day

Provides a steady, predictable increase (e.g.,
Day 1: 4 customers, Day 10: 13 customers).

Exponential Scaling
customers = 5 + floor(day × 1.5)

Results in an accelerating challenge. Early
days are manageable, while later days show
significant growth. This approach can create a
need for system upgrades.

Random Range
customers = random(3, 8)

Introduces uncertainty. Players must prepare
for variation. This is more difficult to balance
and strategize for.

Create a function that returns the customer count for the current day. This function should take the day
number as input (Normal) or access self.day (Extended). Select a formula; adjustments can be made
during playtesting. The objective is to establish a mechanism for variable customer counts.

Mathematics of Customer Formulas

Linear: customers = base + (day × growth_rate)

Exponential: customers = base + floor(day ^ exponent)

Random range: customers = random(min, max)

Hybrid: customers = (3 + day) + random(-2, 2) combines growth with variation

For Extended learners, consider how customer count calculation should integrate with upgrades. If
decoration level or reputation (future features) affect foot traffic, determine whether this function
accepts additional parameters or reads upgrade levels from the Shop object. These architectural
decisions influence system extensibility.

Tasks 7-8: Customer Generation
Task 7 requires creating a representation for a single customer. Each customer needs two properties: a
wish (the item they want) and a budget (the amount they will pay). The data structure chosen affects
interaction with customer data.

Dictionary Approach
customer = {"wish":
"coffee", "budget": 5}

Flexible. Properties can be
added or modified.

Tuple Approach
customer = ("coffee", 5)

Compact. Requires index-
based access.

Class Approach
(Extended)
customer =
Customer("coffee", 5)

Structured. Allows
associated methods (e.g.,
can_afford(),
preferred_item()).

Task 7: Single Customer
Write a function that generates one customer
with random properties:

Randomly select wish from available items

Randomly generate budget (e.g., 2-10)

Return the customer data structure

Task 8: All Daily Customers
Write a function that creates the complete
customer list for a day:

Call the customer count function1.

Loop the determined number of times2.

Generate a customer each iteration3.

Add the customer to a list4.

Return the full list5.

This list represents the daily queue of visitors.

For Extended learners using a Customer class, consider method placement. Determine whether
customer behaviors are handled by customer methods or shop methods. For example, does a customer
method execute a "buy" action, or does a shop method execute a "sell to" action, where the customer is
an argument?

Tasks 9-10: Test Customer Interaction
Task 9 implements the transaction logic for a customer's purchase attempt. This function integrates
inventory checking, price calculation, budget validation, and state updates.

Extract Customer Data
Read customer's wish and budget

Check Availability
Verify item is in stock (quantity > 0)

Calculate Price
Use your selling price formula: base × (1 + manager × 0.1)

Check Budget
Compare customer budget to selling price

Execute or Decline
If valid: reduce inventory, increase money. If not: no changes.

Transaction Mathematics

selling_price = base_prices[item] × (1 + manager_level × 0.1)

sale_valid = (inventory[item] > 0) AND (budget g selling_price)

If valid:

inventory[item] = inventory[item] - 1

money = money + selling_price

Task 9: Purchase Logic
Create a function that accepts a customer and
processes their purchase attempt. Return a
boolean (True/False) indicating success, or return
transaction details (item, price, success) for
logging.

Failure handling: Decide if messages like "Out of
coffee!" or "Customer couldn't afford tea" should
be printed. Such feedback assists with
debugging.

Task 10: Testing Integration
Add a menu option "Test customer purchase"
that:

Generates one random customer.1.

Displays customer's wish and budget.2.

Processes the purchase.3.

Shows the result.4.

Displays updated shop status.5.

This verifies transaction logic before automated
daily processing.

Testing individual customer transactions prior to processing entire days is required. Debugging a single
transaction is simpler than diagnosing issues within a batch. Use clear print statements to show each
step: "Customer wants coffee", "Coffee sells for $2.60", "Customer has $3.00", "Sale successful!". This
diagnostic output is critical for problem resolution.

For Extended implementations, consider the use of return values versus side effects. A
process_customer(customer) method should clearly indicate its effects through return values or
exceptions for easier testing and debugging.

Session 2 Deliverables
Session 2 involves implementing time-based simulation components. Functionality must be verified
before proceeding to Session 3.

Time Systems
Store state (open/closed), day counter,
opening/closing functions implemented

Simulation Loop
Main loop displays status, presents menu,
processes choices, maintains state

Customer Systems
Customer count calculation, single customer
generation, full day customer generation

Transaction Logic
Purchase processing, test interaction
integrated into menu

Normal Path Verification
is_open boolean tracks store state

open_store() and close_store() function

day variable starts at 1 and increments

Status screen shows day, state, money,
inventory, manager level

Main while loop executes continuously

Menu offers multiple choices

determine_customer_count() returns numbers

generate_customer() creates customer data

generate_all_customers() returns a list

process_customer_purchase() updates state

Test customer option functions end-to-end

Extended Path Verification
Shop class has is_open, day attributes

open_store() and close_store() are methods

show_status() method displays complete
state

run_simulation() method contains main loop

Customer class exists with wish, budget
attributes

generate_customers_for_day() returns
Customer objects

process_customer() method handles
Customer objects

Separation between Shop responsibilities and
Customer data

Methods use self appropriately

Design allows for Session 3 expansions

Testing Checklist

Before continuing:

Verify store can be opened and closed.

Verify day counter increments properly.

Verify customer generation produces varied wishes and budgets.

Verify test purchases update money and inventory correctly.

Verify failures (out of stock, insufficient budget) are handled.

Verify main loop executes.

Completion of these checks indicates readiness for Session 3's automation.

