Python Shop
imulation
uilding a Complete
anagement Game

This four-session project guides participants through building a functional shop management simulation
in Python. The system will manage finances, inventory, customer interactions, and equipment upgrades.
This project serves as a practical application of Python programming concepts.

The project offers two paths. All participants will complete a functional simulation utilizing core Python
concepts including variables, functions, loops, and dictionaries. An optional Extended path introduces
object-oriented programming (OOP), architectural patterns, and software engineering principles. Both
paths result in a complete shop simulation, with the Extended version focusing on scalable system
design.

The project is structured across four sessions:

Session 1: Foundation. Establish core mechanics including money, inventory management, and pricing
formulas.

Session 2: Operations. Implement the passage of time, customer generation, and transaction
processing.

Session 3: Expansion. Integrate equipment upgrades, automation features, and data analytics.

Session 4: Completion. Add data persistence via file saving and loading, implement statistics, and
complete the application.

Upon completion, participants will have developed a management game featuring inventory
management, customer service, equipment upgrades, and save/load functionality. This project provides
experience in building an application from core programming principles.

Session 1 0verview: Foundation

Core Mechanics

Session 1 establishes the core components of the shop
simulation. You will create the state variables for money,
inventory, purchasing prices, and the shop manager's level,
which influences pricing strategy.

Functions developed in this session will be called repeatedly
throughout the simulation's lifetime. The shop state should
be designed to handle multiple transactions and allow for
modification.

For Extended learners, this session introduces encapsulation
—qgrouping related data and behaviors into an object. This
includes how a shop object manages its own state and
performs actions, preparing for advanced design patterns.

01 02

State Management Display Functions

Create variables for money, inventory, and pricing Build interfaces for showing current shop status
that persist throughout the simulation

03 04
Business Logic Integration
Implement the pricing formula and purchasing Combine all components into a unified status

mechanics display

Task 1: The Money Variable

Normal Version

Create a single variable to track your shop's
current funds. Choose a starting amount, such
as 30 or 50 units. This number will fluctuate as
inventory is purchased and sales are made.

[The Mathematics of Spending

Extended Version

Integrate the money value as an attribute
within a Shop class. Determine how this value
should be accessed and modified through
methods rather than direct manipulation.

Every purchase follows a simple formula: new_money = current_money - cost. This equation

will appear throughout your simulation, sometimes in complex combinations, but always

following this basic principle of deduction.

Without money, inventory cannot be purchased. Without inventory, sales cannot be made. Without sales,

money cannot be earned. Your implementation must make this value easy to read, modify, and display at

any moment during the simulation.

For Extended learners, consider encapsulation. All modifications to the shop's money should occur

through controlled methods such as spend(amount) or earn(amount), rather than direct external
manipulation. This decision affects code robustness against bugs and the ease of adding features like

transaction logging.

Task 2: Displaying Money

Normal Approach Extended Approach

Write a function that accepts the current money Implement this functionality as a method of your
value as a parameter and prints it in a clear Shop class, such as show_money(self). The
format. This may include currency symbols or method accesses self.money directly without
descriptive text like "Current Funds: $30". needing a parameter.

Key Considerations Designh Questions

e What input does the function need? e Should the method only print, or also return a
 Does it return a value or just print? formatted string?

« How should the output be formatted? * How does this fit into a larger "display all shop

info" method?

¢ What happens if money becomes negative?

Display functions present information. The information should be presented in a way that provides
necessary context.

Task 3: Creating the Inventory System

Your shop needs a way to track multiple items and their quantities. Unlike money (a single number),
inventory is a collection of related values. The structure chosen will impact the ease of adding new
items, updating quantities, and displaying stock levels throughout the application.

—— —O—

Dictionary Approach List Approach Object Approach
Use a dictionary with item Store items as a list of (Extended)

names as keys and tuples or small dictionaries. Create an Inventory class
quantities as values: This approach is more with methods to add,
{"coffee": 10, "tea": 5, complex for searching but remove, and query items.
"pastry": 8}. This provides facilitates ordered iteration. This offers increased
quick lookup and direct flexibility for feature
access. expansion.

Dictionaries are frequently used for inventory due to their efficient access and clear syntax, such as
inventory["coffee"]. The choice of data structure influences the complexity of operations like iterating
through all items, checking item existence, or identifying the most stocked item.

For Extended learners considering a separate Inventory class, define the behaviors inherent to inventory.
This includes determining if inventory manages its own display, enforces quantity constraints, or tracks
sales data. These design decisions affect the system architecture.

Task 4: Displaying Inventory

Create a function that presents your inventory in a readable format. Consider showing not just item
quantities, but also highlighting items that are running low or noting which items are most valuable.

1 2 3
Retrieve Data Format Output Display
Access the inventory Create clear, aligned text Print or return the formatted
structure (dictionary, list, or showing each item and its inventory information
object) quantity

[Extended Thinking: Separation of Concerns

Consider the separation of display logic from inventory logic. Displaying often involves
formatting choices specific to the user interface, which might change even if inventory logic
stays the same. Determine whether show_inventory() should be a Shop method that queries
its inventory attribute, or whether inventory itself should have a display() method.

Use alignment, spacing, and labels effectively for output formatting. Instead of printing "coffee 10 tea 5",
consider "Coffee: 10 units | Tea: 5 units" or a tabular format for multiple items.

Task 5: Base Prices

Understanding Base Prices Example Structure

Base prices represent the cost paid to suppliers base_prices = {

for stocking your shop. These are different from

"coffee"; 2,
selling prices, which are charged to customers. "tea™ 1.5
The relationship between base price and selling "pastry""3
price determines profit margin. "sandwich:" 4

Store base prices in a structure that mirrors your b
inventory. If a dictionary is used for inventory, use
a dictionary for prices. This allows for easy The Cost Formula

lookup of item prices. . .
When buying stock: total_cost = base_price x

quantity

This multiplication applies when restocking

inventory.
$2 $4 $1.50
Coffee Base Sandwich Base Tea Base
Low cost, high volume item Premium product with better Budget-friendly option
margins

For extended implementations, consider managing prices with a PriceManager class or allowing price
fluctuations, discounts, or bulk pricing. These considerations are not required for initial implementation.

Task 6: Manager Level and Pricing
Formula

This simulation mechanic establishes the relationship between manager skill and selling price. An
experienced manager can charge higher prices without losing customers, reflecting improved service
quality, customer relationships, or brand reputation.

1 TheFormula 2 Example Calculation
selling_price = base_price x (1+ If coffee's base price is $2 and the
manager_level x 0.1) manager is level 3:
Each manager level adds 10% to selling selling_price=2x(1+3x01)=2x13=
prices. At level O, items sell at base price. At $2.60

level 3, a 30% increase is applied. Purchasing at $2 and selling at $2.60 yields

$0.60 profit per cup.

Create a function (Normal) or method (Extended) to implement this calculation. The function must
accept the base price and current manager level, returning the computed selling price. This function will
be called during each customer purchase, requiring efficiency and accuracy.

For Extended learners, consider the placement of this logic. Options include a Shop method, a Manager
class method, or a separate PricingEngine. Adhere to the principle of single responsibility: each class
should have one clear purpose. A Manager class might track level and upgrade costs, while actual price
calculation is delegated elsewhere. These architectural decisions apply as systems grow.

Task 7: Purchasing Inventory

The buying function must handle user input, validate it against available funds, update multiple pieces of
state, and provide clear feedback.

Gather Input

Ask which item and how many units to purchase

Calculate Cost

Multiply base price by quantity

Validate Funds

Check if current money = total cost

Execute Transaction

Subtract money, add inventory

Confirm

Display success message or error

@ The Mathematics of Buying
total_cost = base_price[item] x quantity
new_money = current_money - total_cost
new_inventory[item] = current_inventory[item] + quantity

These three equations form the complete transaction. They are interdependent; money cannot be updated without
knowing total cost, and inventory should not update if the money update fails.

Normal Considerations Extended Considerations

* \Validate item existence. e Consider validation as a separate method.
e Handle negative user input. e Consider method return status

¢ Handle non-numeric input. (success/failure).

« Confirm large purchases. e Implement a transaction log.

This function requires attention to transaction logic. Transactions must be atomic, meaning they either complete fully or not at all.
Subtracting money without adding inventory, or vice versa, must be avoided. This simulation teaches state management principles.

Task 8: Unified Status Display

Create a status function that combines all display elements. This function provides the simulation's
dashboard for users to understand their current situation. The status display should provide information
such as current inventory, available actions, and next steps.

Financial Status Inventory Overview

Current money with clear formatting All items and their quantities

Manager Level Context Information

Current skill level affecting prices Optionally include time, day, or other status
indicators

Consider information hierarchy. Critical information, such as money and day, is typically placed at the
top, with supporting details below. Use visual separators (blank lines, dashes, or headers) to group
related information. Information should be scannable; key facts should be absorbable at a glance.

For extended implementations, this function can demonstrate object-oriented design principles. Instead
of passing multiple parameters to a status function, a Shop object can call self.show_status(), which
internally accesses all needed attributes. This encapsulation results in cleaner calling code and a more
maintainable status method, allowing new status elements to be added without changing the method's
signature.

Session 1Deliverables

Session 1 establishes the foundation of the shop simulation. Verify all components function correctly

independently and integrate as specified.

Core State Display Functions Business Logic
Money variable, inventory Individual and unified displays Price calculation formula and
structure, base prices, and for money, inventory, and purchasing functionality
manager level initialized and overall status
accessible

Normal Path Checklist Extended Path Checklist

e Money stored in a variable

e Inventory dictionary or list created
e Base prices defined

e Manager level variable initialized

e show_money() function works
 show_inventory() function works

e calculate_selling_price() function implements
the formula correctly

e buy_items() function handles transactions
properly
e show_status() combines all displays

[J Testing Verification

e Shop class defined with all attributes

¢ Money, inventory, prices, and level stored as
instance attributes

¢ Display methods implemented (show_money,
show_inventory, show_status)

e calculate_selling_price() as a Shop method

¢ buy_items() as a Shop method

e Clear separation between data and behavior
e Methods use self to access attributes

¢ Class design anticipates future extensions

Before proceeding, verify the following: 1) Display initial state, 2) Purchase items successfully,

3) See updated money and inventory, 4) Calculate selling prices for different manager levels,

5) Handle insufficient funds gracefully.

