
Python Shop
Simulation
Building a Complete
Management Game
This four-session project guides participants through building a functional shop management simulation
in Python. The system will manage finances, inventory, customer interactions, and equipment upgrades.
This project serves as a practical application of Python programming concepts.

The project offers two paths. All participants will complete a functional simulation utilizing core Python
concepts including variables, functions, loops, and dictionaries. An optional Extended path introduces
object-oriented programming (OOP), architectural patterns, and software engineering principles. Both
paths result in a complete shop simulation, with the Extended version focusing on scalable system
design.

The project is structured across four sessions:

Session 1: Foundation. Establish core mechanics including money, inventory management, and pricing
formulas.

Session 2: Operations. Implement the passage of time, customer generation, and transaction
processing.

Session 3: Expansion. Integrate equipment upgrades, automation features, and data analytics.

Session 4: Completion. Add data persistence via file saving and loading, implement statistics, and
complete the application.

Upon completion, participants will have developed a management game featuring inventory
management, customer service, equipment upgrades, and save/load functionality. This project provides
experience in building an application from core programming principles.

Session 1 Overview: Foundation

Core Mechanics
Session 1 establishes the core components of the shop
simulation. You will create the state variables for money,
inventory, purchasing prices, and the shop manager's level,
which influences pricing strategy.

Functions developed in this session will be called repeatedly
throughout the simulation's lifetime. The shop state should
be designed to handle multiple transactions and allow for
modification.

For Extended learners, this session introduces encapsulation
4grouping related data and behaviors into an object. This
includes how a shop object manages its own state and
performs actions, preparing for advanced design patterns.

01

State Management
Create variables for money, inventory, and pricing
that persist throughout the simulation

02

Display Functions
Build interfaces for showing current shop status

03

Business Logic
Implement the pricing formula and purchasing
mechanics

04

Integration
Combine all components into a unified status
display

Task 1: The Money Variable

Normal Version
Create a single variable to track your shop's
current funds. Choose a starting amount, such
as 30 or 50 units. This number will fluctuate as
inventory is purchased and sales are made.

Extended Version
Integrate the money value as an attribute
within a Shop class. Determine how this value
should be accessed and modified through
methods rather than direct manipulation.

The Mathematics of Spending

Every purchase follows a simple formula: new_money = current_money - cost. This equation
will appear throughout your simulation, sometimes in complex combinations, but always
following this basic principle of deduction.

Without money, inventory cannot be purchased. Without inventory, sales cannot be made. Without sales,
money cannot be earned. Your implementation must make this value easy to read, modify, and display at
any moment during the simulation.

For Extended learners, consider encapsulation. All modifications to the shop's money should occur
through controlled methods such as spend(amount) or earn(amount), rather than direct external
manipulation. This decision affects code robustness against bugs and the ease of adding features like
transaction logging.

Task 2: Displaying Money

Normal Approach
Write a function that accepts the current money
value as a parameter and prints it in a clear
format. This may include currency symbols or
descriptive text like "Current Funds: $30".

Key Considerations

What input does the function need?

Does it return a value or just print?

How should the output be formatted?

Extended Approach
Implement this functionality as a method of your
Shop class, such as show_money(self). The
method accesses self.money directly without
needing a parameter.

Design Questions

Should the method only print, or also return a
formatted string?

How does this fit into a larger "display all shop
info" method?

What happens if money becomes negative?

Display functions present information. The information should be presented in a way that provides
necessary context.

Task 3: Creating the Inventory System
Your shop needs a way to track multiple items and their quantities. Unlike money (a single number),
inventory is a collection of related values. The structure chosen will impact the ease of adding new
items, updating quantities, and displaying stock levels throughout the application.

Dictionary Approach
Use a dictionary with item
names as keys and
quantities as values:
{"coffee": 10, "tea": 5,
"pastry": 8}. This provides
quick lookup and direct
access.

List Approach
Store items as a list of
tuples or small dictionaries.
This approach is more
complex for searching but
facilitates ordered iteration.

Object Approach
(Extended)
Create an Inventory class
with methods to add,
remove, and query items.
This offers increased
flexibility for feature
expansion.

Dictionaries are frequently used for inventory due to their efficient access and clear syntax, such as
inventory["coffee"]. The choice of data structure influences the complexity of operations like iterating
through all items, checking item existence, or identifying the most stocked item.

For Extended learners considering a separate Inventory class, define the behaviors inherent to inventory.
This includes determining if inventory manages its own display, enforces quantity constraints, or tracks
sales data. These design decisions affect the system architecture.

Task 4: Displaying Inventory
Create a function that presents your inventory in a readable format. Consider showing not just item
quantities, but also highlighting items that are running low or noting which items are most valuable.

1

Retrieve Data
Access the inventory
structure (dictionary, list, or
object)

2

Format Output
Create clear, aligned text
showing each item and its
quantity

3

Display
Print or return the formatted
inventory information

Extended Thinking: Separation of Concerns

Consider the separation of display logic from inventory logic. Displaying often involves
formatting choices specific to the user interface, which might change even if inventory logic
stays the same. Determine whether show_inventory() should be a Shop method that queries
its inventory attribute, or whether inventory itself should have a display() method.

Use alignment, spacing, and labels effectively for output formatting. Instead of printing "coffee 10 tea 5",
consider "Coffee: 10 units | Tea: 5 units" or a tabular format for multiple items.

Task 5: Base Prices

Understanding Base Prices
Base prices represent the cost paid to suppliers
for stocking your shop. These are different from
selling prices, which are charged to customers.
The relationship between base price and selling
price determines profit margin.

Store base prices in a structure that mirrors your
inventory. If a dictionary is used for inventory, use
a dictionary for prices. This allows for easy
lookup of item prices.

base_prices = {
 "coffee": 2,
 "tea": 1.5,
 "pastry": 3,
 "sandwich": 4
}

Example Structure

The Cost Formula

When buying stock: total_cost = base_price ×
quantity

This multiplication applies when restocking
inventory.

$2
Coffee Base

Low cost, high volume item

$4
Sandwich Base

Premium product with better
margins

$1.50
Tea Base

Budget-friendly option

For extended implementations, consider managing prices with a PriceManager class or allowing price
fluctuations, discounts, or bulk pricing. These considerations are not required for initial implementation.

Task 6: Manager Level and Pricing
Formula
This simulation mechanic establishes the relationship between manager skill and selling price. An
experienced manager can charge higher prices without losing customers, reflecting improved service
quality, customer relationships, or brand reputation.

1 The Formula
selling_price = base_price × (1 +
manager_level × 0.1)

Each manager level adds 10% to selling
prices. At level 0, items sell at base price. At
level 3, a 30% increase is applied.

2 Example Calculation
If coffee's base price is $2 and the
manager is level 3:

selling_price = 2 × (1 + 3 × 0.1) = 2 × 1.3 =
$2.60

Purchasing at $2 and selling at $2.60 yields
$0.60 profit per cup.

Create a function (Normal) or method (Extended) to implement this calculation. The function must
accept the base price and current manager level, returning the computed selling price. This function will
be called during each customer purchase, requiring efficiency and accuracy.

For Extended learners, consider the placement of this logic. Options include a Shop method, a Manager
class method, or a separate PricingEngine. Adhere to the principle of single responsibility: each class
should have one clear purpose. A Manager class might track level and upgrade costs, while actual price
calculation is delegated elsewhere. These architectural decisions apply as systems grow.

Task 7: Purchasing Inventory
The buying function must handle user input, validate it against available funds, update multiple pieces of
state, and provide clear feedback.

1
Gather Input
Ask which item and how many units to purchase

2
Calculate Cost
Multiply base price by quantity

3
Validate Funds
Check if current money g total cost

4
Execute Transaction
Subtract money, add inventory

5
Confirm
Display success message or error

The Mathematics of Buying

total_cost = base_price[item] × quantity

new_money = current_money - total_cost

new_inventory[item] = current_inventory[item] + quantity

These three equations form the complete transaction. They are interdependent; money cannot be updated without
knowing total cost, and inventory should not update if the money update fails.

Normal Considerations
Validate item existence.

Handle negative user input.

Handle non-numeric input.

Confirm large purchases.

Extended Considerations
Consider validation as a separate method.

Consider method return status
(success/failure).

Implement a transaction log.

This function requires attention to transaction logic. Transactions must be atomic, meaning they either complete fully or not at all.
Subtracting money without adding inventory, or vice versa, must be avoided. This simulation teaches state management principles.

Task 8: Unified Status Display
Create a status function that combines all display elements. This function provides the simulation's
dashboard for users to understand their current situation. The status display should provide information
such as current inventory, available actions, and next steps.

Financial Status
Current money with clear formatting

Inventory Overview
All items and their quantities

Manager Level
Current skill level affecting prices

Context Information
Optionally include time, day, or other status
indicators

Consider information hierarchy. Critical information, such as money and day, is typically placed at the
top, with supporting details below. Use visual separators (blank lines, dashes, or headers) to group
related information. Information should be scannable; key facts should be absorbable at a glance.

For extended implementations, this function can demonstrate object-oriented design principles. Instead
of passing multiple parameters to a status function, a Shop object can call self.show_status(), which
internally accesses all needed attributes. This encapsulation results in cleaner calling code and a more
maintainable status method, allowing new status elements to be added without changing the method's
signature.

Session 1 Deliverables
Session 1 establishes the foundation of the shop simulation. Verify all components function correctly
independently and integrate as specified.

Core State
Money variable, inventory
structure, base prices, and
manager level initialized and
accessible

Display Functions
Individual and unified displays
for money, inventory, and
overall status

Business Logic
Price calculation formula and
purchasing functionality

Normal Path Checklist
Money stored in a variable

Inventory dictionary or list created

Base prices defined

Manager level variable initialized

show_money() function works

show_inventory() function works

calculate_selling_price() function implements
the formula correctly

buy_items() function handles transactions
properly

show_status() combines all displays

Extended Path Checklist
Shop class defined with all attributes

Money, inventory, prices, and level stored as
instance attributes

Display methods implemented (show_money,
show_inventory, show_status)

calculate_selling_price() as a Shop method

buy_items() as a Shop method

Clear separation between data and behavior

Methods use self to access attributes

Class design anticipates future extensions

Testing Verification

Before proceeding, verify the following: 1) Display initial state, 2) Purchase items successfully,
3) See updated money and inventory, 4) Calculate selling prices for different manager levels,
5) Handle insufficient funds gracefully.

