
Python Cheat Sheet
A comprehensive quick reference guide for beginner programmers learning Python. This cheat sheet
covers essential syntax, data types, control flow, functions, and best practices to support your
programming journey. Keep this handy as you work on your projects and experiments.

Variables & Data Types

Variables are containers that store values so they can be reused throughout your program. Think of them
as labeled boxes where you keep information. In Python, you don't need to declare the type explicitly4
Python figures it out automatically based on the value you assign.

money = 30
day = 1
score = -5

int (Integer)

Whole numbers without decimal points

price = 2.5
rate = 0.1
pi = 3.14

float (Decimal)

Numbers with decimal points

name = "Alice"
item = 'coffee'
msg = "Hello!"

str (String)

Text enclosed in quotes

is_open = False
active = True
done = False

bool (Boolean)

True or False values

Variables can be reassigned at any time, and their type can even change. For example, you could start with

x = 5 and later do x = "hello". However, it's generally better practice to keep variable types consistent to
avoid confusion.

Expressions & Basic Math
Python provides a comprehensive set of arithmetic operators for performing mathematical calculations. These operators work with both integers and floating-point
numbers, allowing you to build complex expressions for calculations in your programs.

total = 10 + 5 # Result: 15

1

Addition (+)

Combines two numbers

change = 20 - 7 # Result: 13

2

Subtraction (-)

Finds the difference

total = price * quantity

3

Multiplication (*)

Multiplies values together

avg = total / count # 10/3 = 3.333

4

Division (/)

Divides and returns a float

pages = items // 10 # 25//10 = 2

5

Floor Division (//)

Divides and rounds down

odd = num % 2 # 7%2 = 1

6

Remainder (%)

Returns division remainder

squared = base ** 2 # 5**2 = 25

7

Exponent (**)

Raises to a power

Real-World Examples

total = price * quantity

Shopping Cart

Calculate the total cost by multiplying the unit price
by the number of items purchased.

boost = base * (1 + 0.1 * level)

Game Upgrade

Calculate stat boosts that increase by 10% per
level, common in RPG games.

cost = base_cost * (growth_factor ** (level -
1))

Exponential Growth

Calculate costs that grow exponentially, like
building upgrades in strategy games.

Pro Tip: Use parentheses to control the order of operations. Python follows standard mathematical order (PEMDAS), but parentheses make your intentions
clear: (a + b) * c vs a + (b * c)

Input & Output
Interacting with users is a fundamental part of programming. Python provides simple functions for displaying
information to users and collecting input from them. Understanding how these functions work is essential for creating
interactive programs.

print("Money:", money)
print("Welcome to the shop!")
print("Total:", total, "Gold")

Printing Output

The print() function displays information to the
console. You can print variables, strings, or multiple
items separated by commas.

When printing multiple items with commas, Python
automatically adds spaces between them.

name = input("What's your name? ")
item = input("Choose item: ")
print("Hello,", name)

Getting User Input

The input() function displays a prompt and waits for
the user to type something and press Enter.

The text inside input() is shown to the user as a
prompt. Whatever they type becomes the value of the
variable.

Converting Input Types

Here's a critical point that trips up many beginners: the input() function always returns a string, even if the user types a
number. If you need to use the input as a number for calculations, you must convert it first.

qty = input("How many? ")
qty is "5" (text)

1

String Input

qty = int(input("How many?
"))
qty is 5 (number)

2

Convert to Integer

total = price * qty
Now this works!

3

Use in Math

Common Conversions

int(x) 4 Convert to integer

float(x) 4 Convert to decimal

str(x) 4 Convert to string

age = int(input("Age? "))
price = float(input("Price? "))
code = str(123) # "123"

Example

Remember: If you try to do math with a string number like "5" * 2, you'll get "55" instead of 10! Always convert
numeric input before calculations.

If Statements
Conditional statements enable programs to make decisions and execute different code based on conditions, making your code dynamic.

Basic Structure

01

if condition:

Executes if condition is True.

02

elif other_condition:

Checks another condition if previous were False.
Multiple `elif` blocks allowed.

03

else:

Executes if all preceding conditions are False.

if money >= 10:
 print("You can afford it!")
elif money >= 5:
 print("Almost enough...")
else:
 print("Not enough money.")

Example Code

Only one block executes. Python checks conditions sequentially,
stopping at the first True one.

Correct
if x > 5:
 print("Big")
 print("Really big")

Wrong - IndentationError
if x > 5:
print("Big")

Indentation Matters

Python uses indentation (4 spaces or 1 tab) to define code blocks.

Comparison Operators

These operators compare two values and return True or False:

if name == "Alice":

== (Equal)

Checks if values are equal.

if status != "closed":

!= (Not Equal)

Checks if values are different.

if score > 100:
if age < 18:

> < (Greater/Less)

Compares numeric values.

if level >= 10:
if temp <= 0:

>= <= (Or Equal)

Includes boundary value.

Logical Operators

Combine multiple conditions to create more complex logic:

if money >= 10 and level >= 5:
 print("Can buy upgrade!")

and

Both conditions True.

if day == "Saturday" or day ==
"Sunday":
 print("Weekend!")

or

At least one condition True.

if not is_closed:
 print("Shop is open!")

not

Inverts boolean value.

Loops

Loops repeat code efficiently. Python offers for loops for iterating through sequences and while loops for repeating based on
conditions.

items = ["coffee", "tea", "cake"]
for item in items:
 print(item)

Loop with numbers
for i in range(5):
 print(i) # 0, 1, 2, 3, 4

For Loop

Use for loops to iterate through sequences (lists, strings,

range()) or when the number of repetitions is known.

The loop variable takes each sequence value.

running = True
while running:
 choice = input("Continue? (y/n) ")
 if choice == "n":
 running = False

Countdown
count = 5
while count > 0:
 print(count)
 count -= 1

While Loop

Use while loops to repeat code as long as a condition is true,
especially when the number of iterations is unknown.

The loop runs while its condition is True. Ensure the condition
can eventually become False to prevent infinite loops.

The range() Function

The range() function generates sequences of numbers, perfect for for loops:

for i in range(3): # 0, 1, 2

range(n)

Generates 0 to n-1

for i in range(2, 5): # 2, 3, 4

range(start, stop)

Generates start to stop-1

for i in range(0, 10, 2): # 0, 2,
4, 6, 8

range(start, stop, step)

Generates with custom increment

Loop Control Keywords

for item in items:
 if item == "exit":
 break
 print(item)

break

Exits loop immediately

for num in range(10):
 if num % 2 == 0:
 continue
 print(num) # Odd numbers only

continue

Skips current iteration, moves to next

Warning: Be careful with while loops! If the condition never becomes False, you'll create an infinite loop. Always ensure
there's a way for the loop to end. Use Ctrl+C to stop a runaway loop.

Lists
Lists are ordered, mutable collections of items, used to group and manipulate related data in Python.

Creating and Using Lists

items = ["coffee", "tea", "cake"]
empty = []
mixed = [1, "two", 3.0, True]

Basic List Operations

Lists can contain any type of data, including mixed types.

first = items[0] # "coffee"
last = items[-1] # "cake"
second = items[1] # "tea"

Accessing Elements

Python uses zero-based indexing4the first item is at index 0. Negative indices count from the
end.

Common List Methods

items.append("sandwich")
["coffee", "tea", "cake", "sandwich"]

1

append(item)

Adds an item to the end.

items.insert(1, "juice")
["coffee", "juice", "tea", "cake"]

2

insert(index, item)

Inserts an item at a specific position.

items.remove("tea")
["coffee", "cake", "sandwich"]

3

remove(item)

Removes the first occurrence of an item.

last = items.pop()
Returns "sandwich", list is now shorter

4

pop(index)

Removes and returns item at index (default: last).

count = len(items)
Returns 3

5

len(list)

Gets the number of items in the list.

List Slicing

Extract portions of a list using slice notation:

numbers = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
first_three = numbers[0:3] # [0, 1, 2]
middle = numbers[3:7] # [3, 4, 5, 6]
last_two = numbers[-2:] # [8, 9]
every_other = numbers[::2] # [0, 2, 4, 6, 8]

Looping Through Lists

for item in items:
 print(item)

By Item (Recommended)

Use for values only.

for i in range(len(items)):
 print(i, items[i])

By Index

Use for position and value.

Pro Tip: Lists are perfect for storing inventory items, player scores, menu options, or any collection where order matters and you might add or remove elements.

Dictionaries
Dictionaries store data as key-value pairs, allowing you to look up values using descriptive keys instead of numeric
indices. They're ideal for structured data like user profiles or configuration settings.

Creating and Accessing Dictionaries

inventory = {
 "coffee": 10,
 "tea": 5,
 "cake": 3
}

Create

Keys and values are separated by colons.

coffee_qty = inventory["coffee"] # 10
sugar = inventory.get("sugar", 0) # 0

Access Values

Use brackets or get() for safe access.

inventory["coffee"] = 15
inventory["muffin"] = 8

Modify Values

Assignment creates or updates keys.

del inventory["cake"]
removed = inventory.pop("tea")

Remove Items

del removes; pop() removes and returns.

Common Dictionary Methods

keys = inventory.keys()
dict_keys(['coffee', 'tea'])

values = inventory.values()
dict_values([10, 5])

items = inventory.items()
Key-value pairs

Keys & Values

if "coffee" in inventory:
 print("We have coffee!")

if "pizza" not in inventory:
 print("Out of pizza!")

Check Membership

num_items = len(inventory)
Returns number of keys

is_empty = len(inventory) == 0

Length

Dictionaries (Part 2)
Looping Through Dictionaries

for item in inventory:
 print(item)

Keys

for qty in
inventory.values():
 print(qty)

Values

for item, qty in
inventory.items():
 print(f"{item}: {qty}")

Both (Best)

Nested Dictionaries

Dictionaries can contain other dictionaries:

shop_data = {
 "inventory": {"coffee": 10},
 "prices": {"coffee": 3.50}
}
coffee_price = shop_data["prices"]["coffee"] # Access nested values

Access nested values as shown in the example.

Remember: Dictionary keys must be immutable (strings, numbers, tuples), but values can be
anything.

Functions
Functions are reusable blocks of code that perform specific tasks, helping organize programs, avoid repetition, and improve
maintainability.

Function Basics

def greet(name):
 print(f"Hello, {name}!")

def add(a, b):
 return a + b

def get_status():
 return "Active"

Defining Functions

Define with def, name, parameters, and colon. Indent
body.

greet("Alice")
Prints: Hello, Alice!

result = add(3, 4)
result is 7

status = get_status()
status is "Active"

Calling Functions

Call by name with arguments. Capture returns with assignment.

Parameters vs Arguments

def calculate_price(quantity, unit_price):

Parameters

Variables in function definition; placeholders for needed
data.

quantity and unit_price are parameters.

total = calculate_price(5, 3.50)

Arguments

Actual values passed when calling the function.

5 and 3.50 are arguments.

Return Values

The return statement sends a value back and exits. Functions without it return None.

def square(x):
 return x ** 2

01

Single Return

Calculates and returns a single value.

def min_max(numbers):
 return min(numbers),
max(numbers)

low, high = min_max([3, 7, 2, 9])

02

Multiple Returns

Returns multiple values (tuple) for
unpacking.

def divide(a, b):
 if b == 0:
 return None
 return a / b

03

Early Return

Exits function early based on conditions.

Functions (Part 2)
Function Design Guidelines

One Purpose - Each function should do one
thing well

Use Parameters - Pass values via parameters,
avoid hardcoding

Prefer Return - Return values, don't just print
them, for reusability

Descriptive Names - Use verbs describing
action: calculate_total(), get_user_input()

Default Parameters

Give parameters default values to make them optional:

def greet(name, greeting="Hello"):
 print(f"{greeting}, {name}!")

greet("Alice") # Uses default: "Hello, Alice!"
greet("Bob", "Hey") # Custom greeting: "Hey, Bob!"

Basics of Classes
Classes are blueprints for creating objects that bundle related data and behavior. They are the foundation of object-oriented programming
(OOP), helping structure complex programs by organizing data and functions that operate on that data.

Understanding Classes

class Shop:
 def __init__(self):
 self.money = 0
 self.inventory = {}

 def show_money(self):
 print(f"Money: ${self.money}")

 def add_item(self, item, qty):
 self.inventory[item] = qty

What Are Classes?

A class is a blueprint (like a cookie cutter) defining properties (data)

and methods (functions) for objects. Each object created from the
class is an independent instance with its own data.

shop1 = Shop()
shop1.money = 100
shop1.add_item("coffee", 10)

shop2 = Shop()
shop2.money = 50
shop2.add_item("tea", 5)

shop1.show_money() # Money: $100
shop2.show_money() # Money: $50

Creating and Using Objects

Create multiple objects (instances) from a class. Each instance

holds its own separate data.

Key Concepts

def __init__(self, starting_money):
 self.money = starting_money
 self.level = 1

shop = Shop(100) # Passes 100 to __init__

__init__ Method

The constructor (__init__) runs automatically when an object is
created, setting initial attribute values.

def add_money(self, amount):
 self.money += amount # Modifies THIS object's money

self Parameter

Every method must have self as its first parameter. It refers to
the specific object instance, allowing methods to access its
data.

self.money = 0
self.name = "Main Shop"
self.inventory = []

Instance Variables

Variables belonging to a specific object, defined with

self.variable_name. Each instance has its own copy.

def calculate_total(self):
 return sum(self.inventory.values())

total = shop.calculate_total()

Methods

Functions that belong to a class. They operate on the object's

data and are called via object.method().

Why Use Classes? Classes organize related data and functions, making complex programs easier to understand and maintain.

Complete Example: Player Class

class Player:
 def __init__(self, name):
 self.name = name
 self.health = 100
 self.level = 1
 self.inventory = []

 def take_damage(self, amount):
 self.health -= amount
 if self.health < 0:
 self.health = 0

 def heal(self, amount):
 self.health += amount
 if self.health > 100:
 self.health = 100

 def level_up(self):
 self.level += 1
 self.health = 100
 print(f"{self.name} reached level {self.level}!")

 def add_item(self, item):
 self.inventory.append(item)

Usage
player = Player("Hero")
player.take_damage(30)
player.add_item("sword")
player.level_up()

JSON Save & Load
JSON is a lightweight text format for storing and exchanging data. Python's json module simplifies saving and loading
program states, ideal for game saves, user preferences, and application settings.

Why Use JSON?

Human-Readable

Plain text, easy to read and debug.
Can be edited manually if needed.

Universal Format

Works across different programming
languages (Python, JavaScript, etc.)
and platforms.

Perfect for Python

Maps naturally to Python types: dicts
to objects, lists to arrays, basic types
directly.

Saving Data (Writing JSON)

import json

game_data = {
 "player": "Alice",
 "level": 5
}

with open("savegame.json", "w") as f:
 json.dump(game_data, f)

Basic Save Operation

json.dump() writes data to a file.

with open("savegame.json", "w") as f:
 json.dump(game_data, f, indent=2)

Output:
{
"player": "Alice",
"level": 5
}

Pretty Printing

Add indent=2 for readable formatting.

Loading Data (Reading JSON)

with open("savegame.json")
as f:

Open File

Open in read mode (default).

 data = json.load(f)

Parse JSON

json.load() converts JSON to
Python objects.

player_name =
data["player"]
current_level = data["level"]

Use the Data

Access like a Python dict or list.

Complete Example: Game Save System

import json

def save_game(player_data, filename="savegame.json"):
 with open(filename, "w") as f:
 json.dump(player_data, f, indent=2)
 print("Game saved!")

def load_game(filename="savegame.json"):
 try:
 with open(filename) as f:
 return json.load(f)
 except FileNotFoundError:
 print("No save file found. Starting new game.")
 return None

player = {
 "name": "Hero",
 "health": 85,
 "level": 7,
 "gold": 450
}

save_game(player)
loaded_player = load_game()
if loaded_player:
 print(f"Welcome back, {loaded_player['name']}!")
 print(f"Level: {loaded_player['level']}")

What Can JSON Store?

Python Type JSON Type Example

dict object {"key": "value"}

list, tuple array [1, 2, 3]

str string "hello"

int, float number 42, 3.14

True, False true, false true

None null null

Important: JSON cannot directly store custom objects, functions, or classes. Convert these to dictionaries before saving, and
reconstruct them after loading.

Error Handling
Errors (also called exceptions) are inevitable in programming4users enter invalid data, files go missing, networks fail,
and unexpected situations arise. Rather than letting your program crash, you can use error handling to catch problems
gracefully and respond appropriately. This makes your programs more robust and user-friendly.

The Try-Except Pattern

try:
 # Code that might cause an error
 risky_operation()
except ErrorType:
 # What to do if that error occurs
 handle_error()

Basic Structure

Python tries to execute the code in the try block. If an
error occurs, it immediately jumps to the matching
except block instead of crashing.

try:
 qty = int(input("How many? "))
 print(f"You want {qty} items")
except ValueError:
 print("Please enter a number.")
 qty = 1 # Use default value

Common Example

If the user types "five" instead of "5", the int() conversion
fails. The except block catches the error and handles it
gracefully.

Common Exception Types

try:
 age = int("twenty")
except ValueError:
 print("Not a valid number!")

ValueError

Invalid value for a function, like converting non-
numeric text to int.

try:
 price = prices["pizza"]
except KeyError:
 print("Item not found!")
 price = 0

KeyError

Accessing a dictionary key that doesn't exist.

try:
 with open("data.txt") as f:
 content = f.read()
except FileNotFoundError:
 print("File not found!")

FileNotFoundError

Trying to open a file that doesn't exist.

try:
 result = total / count
except ZeroDivisionError:
 print("Can't divide by zero!")
 result = 0

ZeroDivisionError

Dividing by zero in mathematical operations.

Error Handling (Part 2)
Advanced Error Handling

try:
 # Some risky code
 x = 10 / int(input("Enter a number: "))
 my_list = [1, 2]
 print(my_list[x])
except ZeroDivisionError:
 print("Error: Cannot divide by zero!")
except ValueError:
 print("Error: Invalid input, please enter a number.")
except IndexError:
 print("Error: Index out of range.")

1

Multiple Except Blocks

Handle different errors differently based on what went wrong.

try:
 num = int("abc") # ValueError
 # num = 10 / 0 # ZeroDivisionError
except (ValueError, ZeroDivisionError) as e:
 print(f"An input or calculation error occurred: {e}")

2

Catch Multiple Errors

Handle multiple error types the same way using a tuple.

try:
 result = some_function_that_might_fail()
except Exception as e:
 print(f"An unexpected error occurred: {e}")
 # Log the error for debugging
 # Optionally, re-raise the exception if it cannot be
handled here: raise

3

Catch All Errors

Exception catches most errors, stored in e.

try:
 file = open("data.txt", "r")
 content = file.read()
except FileNotFoundError:
 print("File not found!")
else:
 print("File read successfully.")
 # Process content
finally:
 if 'file' in locals() and not file.closed:
 file.close()
 print("Cleanup complete.")

4

Else and Finally

else runs if no errors, finally always runs.

Best Practices

Be Specific

Catch specific errors rather than all errors when possible. This

helps you write more targeted error handling logic and
prevents you from accidentally catching errors you don't
expect.

Don't Hide Errors Silently

Always do something in an except block. Print an error

message, log the error, notify the user, or take corrective

action. An empty except block can make debugging very
difficult.

Use for User Input

Wrap conversions or operations involving user input in try-
except blocks. Users are unpredictable, and their input is a
common source of runtime errors.

Combine with Loops

Use try-except inside loops for validation. This allows a
program to gracefully handle invalid entries without crashing,
prompting the user to try again until valid input is received.

Practical Example: Robust User Input

This function keeps asking until valid input is provided.

def get_positive_integer(prompt):
 while True:
 try:
 value = int(input(prompt))
 if value <= 0:
 print("Please enter a positive number.")
 else:
 return value
 except ValueError:
 print("Invalid input. Please enter a whole number.")

Usage
age = get_positive_integer("Enter your age: ")
print(f"Your age is: {age}")

Remember: Error handling isn't about preventing errors4it's about controlling what happens when
they inevitably occur.

Good Program Design

Good: Related functions grouped
def add_inventory(item, qty):
 inventory[item] = qty

def remove_inventory(item):
 del inventory[item]

def show_inventory():
 for item, qty in inventory.items():
 print(f"{item}: {qty}")

1

Keep Related Code Together

Group related functions, variables, and classes in the same place. If you're building a shop system, put all inventory functions near each other, all
money-related functions together, and so on.

This organization makes code easier to find and understand. Consider using classes to bundle related data and functions together.

Bad: One giant function doing everything
def run_shop():
 # 100 lines of code here...

Good: Broken into logical pieces
def display_menu():
 # Show options

def get_user_choice():
 # Get and validate input

def process_purchase():
 # Handle buying

def run_shop():
 display_menu()
 choice = get_user_choice()
 if choice == "buy":
 process_purchase()

2

Avoid Long Functions

If a function is longer than one screen (about 30-50 lines), it probably does too much. Break it into smaller, focused functions that each do one thing
well.

Smaller functions are easier to test, debug, and reuse in different contexts.

Bad: Unclear names
def calc(x, y):
 return x * y + 10
a = calc(5, 3)

Good: Self-explanatory names
def calculate_total_price(quantity, unit_price):
 base_cost = quantity * unit_price
 shipping_fee = 10
 return base_cost + shipping_fee

total_cost = calculate_total_price(5, 3)

3

Use Clear, Descriptive Names

Variables and functions should explain their purpose without needing comments. Someone reading your code should understand what each element
does from its name alone.

Use snake_case for variables and functions, PascalCase for classes. Avoid single-letter names except in short loops.

Good Program Design (Part 2)

Good: Related functions grouped
def add_inventory(item, qty):
 inventory[item] = qty

def remove_inventory(item):
 del inventory[item]

def show_inventory():
 for item, qty in inventory.items():
 print(f"{item}: {qty}")

1

Keep Related Code Together

Group related functions, variables, and classes in the same place. If you're building a shop system, put all inventory functions near each other, all
money-related functions together, and so on.

This organization makes code easier to find and understand. Consider using classes to bundle related data and functions together.

Bad: One giant function doing everything
def run_shop():
 # 100 lines of code here...

Good: Broken into logical pieces
def display_menu():
 # Show options

def get_user_choice():
 # Get and validate input

def process_purchase():
 # Handle buying

def run_shop():
 display_menu()
 choice = get_user_choice()
 if choice == "buy":
 process_purchase()

2

Avoid Long Functions

If a function is longer than one screen (about 30-50 lines), it probably does too much. Break it into smaller, focused functions that each do one thing
well.

Smaller functions are easier to test, debug, and reuse in different contexts.

Bad: Unclear names
def calc(x, y):
 return x * y + 10
a = calc(5, 3)

Good: Self-explanatory names
def calculate_total_price(quantity, unit_price):
 base_cost = quantity * unit_price
 shipping_fee = 10
 return base_cost + shipping_fee

total_cost = calculate_total_price(5, 3)

3

Use Clear, Descriptive Names

Variables and functions should explain their purpose without needing comments. Someone reading your code should understand what each element
does from its name alone.

Use snake_case for variables and functions, PascalCase for classes. Avoid single-letter names except in short loops.

Good Program Design (Part 3)

player1_score = 100
player1_bonus = 10
player1_adjusted = player1_score + player1_bonus

player2_score = 150
player2_bonus = 5
player2_adjusted = player2_score + player2_bonus

player3_score = 80
player3_bonus = 12
player3_adjusted = player3_score + player3_bonus

def calculate_adjusted_value(score, bonus):
 return score + bonus

player1_adjusted = calculate_adjusted_value(100, 10)
player2_adjusted = calculate_adjusted_value(150, 5)
player3_adjusted = calculate_adjusted_value(80, 12)

1

Don't Repeat Yourself (DRY)

If copying code, create a function instead. This makes your code more concise, easier to
read, and less prone to errors.

Bad example - Repeated player calculations:

Good example - Reusable function:

def calculate_discount(price, percentage):
 return price * (1 - percentage / 100)

Test cases
assert calculate_discount(100, 10) == 90
assert calculate_discount(50, 50) == 25
assert calculate_discount(200, 0) == 200
print("All discount tests passed!")

2

Test Small Parts Separately

Write and test small functions immediately before building larger programs. This helps catch
bugs early and ensures each component works as expected.

Good Program Design (Part 4)
This example demonstrates how code organization can significantly improve readability, maintainability,
and reusability.

inventory = {"apple": 5, "banana": 10}
price_list = {"apple": 1.0, "banana": 0.5}

def buy_item(item, qty):
 global inventory
 if item in inventory and inventory[item] >=
qty:
 inventory[item] -= qty
 total = qty * price_list[item]
 print(f"Bought {qty} {item}(s) for
${total:.2f}")
 else:
 print(f"Not enough {item} in stock.")

buy_item("apple", 2)

Poor Organization

Everything mixed, uses globals, poor naming.

class Shop:
 def __init__(self):
 self.inventory = {"apple": 5, "banana":
10}
 self.price_list = {"apple": 1.0, "banana":
0.5}

 def process_purchase(self, item_name,
quantity):
 if item_name in self.inventory and
self.inventory[item_name] >= quantity:
 self.inventory[item_name] -= quantity
 total_cost = quantity *
self.price_list[item_name]
 print(f"Purchased {quantity}
{item_name}(s) for ${total_cost:.2f}")
 else:
 print(f"Insufficient {item_name} in
stock.")

my_shop = Shop()
my_shop.process_purchase("apple", 2)

Better Organization

Uses a Shop class, clear methods, no globals,
descriptive names.

"Think Like a Writer: Just as good writers revise their prose, good programmers refactor their code. Your
first version doesn't have to be perfect4write it to work, then improve it to be clear."

Debugging Tips
Debugging is the art of finding and fixing errors in your code. Every programmer, from beginners to experts, spends significant time debugging.
The key difference is that experienced programmers have systematic strategies for tracking down problems. These techniques will help you
debug more efficiently and learn from your mistakes.

def calculate_total(prices):
 total = 0
 for price in prices:
 print(f"Adding {price}, total is now {total}") # Debug print
 total += price
 print(f"Final total: {total}") # Debug print
 return total

Print Intermediate Values

When your code produces wrong results, use print statements to see what's happening at each step. This is the simplest and most
effective debugging technique.

Print variable values before and after critical operations. Once you find the bug, remove the debug prints or comment them out.

Wrong - inconsistent indentation
if x > 5:
 print("Big")
 print("Also big") # Too few spaces

Right - consistent indentation
if x > 5:
 print("Big")
 print("Also big")

Check Indentation

Python is extremely sensitive to indentation4tabs and spaces matter! If code seems correct but doesn't work, check that all lines

in a block are indented consistently.

Configure your editor to show whitespace characters or use 4 spaces consistently. Mixing tabs and spaces causes hard-to-spot
errors.

qty = input("How many? ")
print(f"qty is: {qty}, type: {type(qty)}") #

if qty > 5: # Error! Can't compare string to number
 print("Many")

Fix: Convert to int first
qty = int(input("How many? "))
print(f"qty is: {qty}, type: {type(qty)}") #

Verify Data Types

Many bugs occur when variables have unexpected types. Use type() to check what type a variable actually is.

Remember: input() always returns strings, / always returns floats, list indices must be integers.

Debugging Tips (Part 1.5)
Continue with debugging tips 4-5:

player_score = 100
player_scoer = 50 # Typo! Creates new variable

print(player_score) # 100 - not what you wanted!

Verify Spelling

Python is case-sensitive and won't warn you about typos in variable names4it just creates a new
variable. Double-check that variable names are spelled exactly the same everywhere.

Common mistakes:

myList vs mylist

userName vs username

getData vs getdata

Use consistent naming conventions and enable your editor's autocomplete to avoid typos.

Test a function alone
def calculate_discount(price, percent):
 return price * (1 - percent / 100)

Test with known values
print(calculate_discount(100, 20)) # Should be 80
print(calculate_discount(50, 50)) # Should be 25
print(calculate_discount(200, 0)) # Should be 200

Only after tests pass, integrate into larger program

Test One Function at a Time

When building complex programs, test each function in isolation before connecting everything.
This helps you identify exactly where problems occur.

Write simple test cases with known correct answers. This is called "unit testing."

Debugging Tips (Part 2)
Understanding common error messages and employing advanced debugging techniques are crucial for efficient
troubleshooting. This section details frequent Python errors and strategies to effectively locate and resolve them.

Common Error Messages & Solutions

Error Message Solution

SyntaxError broke grammar rules ³ check for missing colons,
quotes, parentheses

NameError variable doesn't exist ³ check spelling or initialize first

TypeError wrong type for operation ³ check types, convert if
needed

IndexError list index out of range ³ check length, indices start at
0

KeyError dictionary key doesn't exist ³ use 'in' to check or .get()

IndentationError inconsistent spaces/tabs ³ use 4 spaces consistently

Advanced Debugging Techniques

Use Python Debugger (pdb)

Use set_trace() to pause
program execution and inspect
variables, step through code, and
examine the call stack. This
provides a powerful way to
understand program flow at
critical points.

Binary Search Debugging

When a bug is difficult to
pinpoint, add print statements
roughly halfway through your
code. If the bug occurs before
the print, move the print
statement earlier; if after, move it
later. Repeat to quickly narrow
down the problematic section.

Rubber Duck Debugging

Explain your code line by line to
an inanimate object (like a
rubber duck) or a colleague. The
act of articulating your logic
often helps you spot flaws,
assumptions, or
misunderstandings in your own
code.

"Bugs are learning opportunities. Every error teaches you something about how Python works."

Pro Tip: Before asking for help, create a minimal example that reproduces the bug. This forces you to isolate
the problem and provides a clear, concise issue for others to understand.

