Python Cheat Sheet

A comprehensive quick reference guide for beginner programmers learning Python. This cheat sheet
covers essential syntax, data types, control flow, functions, and best practices to support your
programming journey. Keep this handy as you work on your projects and experiments.

Variables & Data Types

Variables are containers that store values so they can be reused throughout your program. Think of them
as labeled boxes where you keep information. In Python, you don't need to declare the type explicitly—
Python figures it out automatically based on the value you assign.

int (Integer) float (Decimal)
Whole numbers without decimal points Numbers with decimal points
money = 30 price = 2.5
day =1 rate = 0.1
score =-5 pi=3.14
str (String) bool (Boolean)
Text enclosed in quotes True or False values
name = "Alice" is_open = False
item = 'coffee’ active = True
msg = "Hello!" done = False

Variables can be reassigned at any time, and their type can even change. For example, you could start with
x =5 and later do x = "hello". However, it's generally better practice to keep variable types consistent to
avoid confusion.

Expressions & Basic Math

Python provides a comprehensive set of arithmetic operators for performing mathematical calculations. These operators work with both integers and floating-point
numbers, allowing you to build complex expressions for calculations in your programs.

Addition (+)

Combines two numbers

total =10 +5 # Result: 15

Subtraction (-)

Finds the difference

change =20-7 # Result: 13

Multiplication (*)

Multiplies values together
total = price * quantity

Division (/)

Divides and returns a float

avg = total / count # 10/3 =3.333

Floor Division (//)

Divides and rounds down

pages = items // 10 # 25//10=2

Remainder (%)

Returns division remainder

odd=num %2 #7%2=1

Exponent (**)

Raises to a power

squared = base ** 2 # 5%*2 =25

Real-World Examples

Shopping Cart Game Upgrade Exponential Growth
total = price * quantity boost = base * (1 + 0.1 * level) cost = base_cost * (growth_factor ** (level -
1)
Calculate the total cost by multiplying the unit price Calculate stat boosts that increase by 10% per
by the number of items purchased. level, common in RPG games. Calculate costs that grow exponentially, like

building upgrades in strategy games.

D Pro Tip: Use parentheses to control the order of operations. Python follows standard mathematical order (PEMDAS), but parentheses make your intentions
clear: (@+b)*cvsa+(b*c)

Input & Output

Interacting with users is a fundamental part of programming. Python provides simple functions for displaying
information to users and collecting input from them. Understanding how these functions work is essential for creating
interactive programs.

Printing Output Getting User Input
The print() function displays information to the The input() function displays a prompt and waits for
console. You can print variables, strings, or multiple the user to type something and press Enter.

items separated by commas.

name = input("What's your name? ")
print("Money:", money) item = input("Choose item: ")
print("Welcome to the shop!") print("Hello,", name)
print("Total:", total, "Gold")

The text inside input() is shown to the user as a
When printing multiple items with commas, Python prompt. Whatever they type becomes the value of the
automatically adds spaces between them. variable.

Converting Input Types

Here's a critical point that trips up many beginners: input(IS IENTEVER GOSN dlls), even if the user types a

number. If you need to use the input as a number for calculations, you must convert it first.

1 2 3
String Input Convert to Integer Use in Math
gty = input("How many? ") gty = int(input("How many? total = price * qty
qty is "5" (text) ") # Now this works!

qty is 5 (number)

Common Conversions Example

e int(x) — Convert to integer o
age = int(input("Age? "))

price = float(input("Price? "))
e str(x) — Convert to string code =str(123) #"123"

e float(x) — Convert to decimal

Remember: If you try to do math with a string number like "5" * 2, you'll get "55" instead of 10! Always convert
numeric input before calculations.

If Statements

Conditional statements enable programs to make decisions and execute different code based on conditions, making your code dynamic.

Basic Structure

01 02 03
if condition: elif other_condition: else:
Executes if condition is True. Checks another condition if previous were False. Executes if all preceding conditions are False.

Multiple “elif* blocks allowed.

Example Code Indentation Matters

MUl ISy indentation (4 spaces or 1 tab) to define code blocks

if money >=10:
print("You can afford it!")

elif money >=5: # Correct
print("Almost enough...") if x> 5:
print("Big")

else:

print("Not enough money.") T TREELY Lol

Wrong - IndentationError
Only one block executes. Python checks conditions sequentially, e

if x> 5:
stopping at the first True one. . .
print("Big")
Comparison Operators
These operators compare two values and return True or False:
== (Equal) != (Not Equal)
if name == "Alice": if status !="closed":
Checks if values are equal. Checks if values are different.
> < (Greater/Less) >= <= (Or Equal)
if score > 100: if level >=10:
if age <18: if temp <= 0:
Compares numeric values. Includes boundary value.
Logical Operators
Combine multiple conditions to create more complex logic:
and or not
Both conditions True. At least one condition True. Inverts boolean value.
if money >= 10 and level >=5: if day == "Saturday" or day == if not is_closed:
print("Can buy upgrade!") "Sunday": print("Shop is open!")

print("Weekend!")

Loops

Loops repeat code efficiently. Python offers for loops for iterating through sequences and while loops for repeating based on

conditions.

For Loop
Use for loops to iterate through sequences (lists, strings,

range()) or when the number of repetitions is known.

items = ["coffee", "tea", "cake"]
for item in items:
print(item)

Loop with numbers
foriin range(5):

print(i) #0,1,2,3,4

The loop variable takes each sequence value.

The range() Function

While Loop

Use while loops to repeat code as long as a condition is true,
especially when the number of iterations is unknown.

running = True
while running:
choice = input("Continue? (y/n) ")

if choice =="n":
running = False

Countdown

count=5

while count > 0:
print(count)
count -=1

The loop runs while its condition is True. Ensure the condition
can eventually become False to prevent infinite loops.

The range() function generates sequences of numbers, perfect for for loops:

range(n) range(start, stop) range(start, stop, step)
Generates 0 to n-1 Generates start to stop-1 Generates with custom increment
foriinrange(3): #0,1,2 foriinrange(2,5): #2,3,4 foriinrange(0, 10, 2): #0, 2,
4,6,8
Loop Control Keywords

break

Exits loop immediately

for item in items:
if item == "exit":
break
print(item)

continue

Skips current iteration, moves to next

for num in range(10):
if num % 2 == 0:
continue
print(num) # Odd numbers only

O warning: Be careful with while loops! If the condition never becomes False, you'll create an infinite loop. Always ensure
there's a way for the loop to end. Use Ctrl+C to stop a runaway loop.

Lists

Lists are ordered, mutable collections of items, used to group and manipulate related data in Python.

Creating and Using Lists

Basic List Operations Accessing Elements
items = ["coffee", "tea", "cake"] first = items[0] # "coffee"
empty =[] last = items[-1] # "cake"
mixed = [1, "two", 3.0, True] second = items[1] # "tea"
Lists can contain any type of data, including mixed types. Yo VTR =T (ol o E =T oL [SMA]ale|— the first item is at index 0. Negative indices count from the
end.

Common List Methods

— — — 0 — — 00—

append (item) insert(index, item) remove(item)
Adds an item to the end. Inserts an item at a specific position. Removes the first occurrence of an item.
items.append("sandwich") items.insert(1, "juice") items.remove("tea")
["coffee", "tea", "cake", "sandwich"] # ["coffee”, "juice", "tea", "cake"] # ["coffee", "cake", "sandwich"]
pop(index) len(list)
Removes and returns item at index (default: last). Gets the number of items in the list.
last = items.pop() count = len(items)
Returns "sandwich", list is now shorter # Returns 3
List Slicing

Extract portions of a list using slice notation:

numbers=1[0,1,2,3,4,5,6,7,8,9]
first_three = numbers[0:3] #1[0, 1, 2]
middle = numbers[3:7] #[3,4,5,6]
last_two = numbers[-2:] #[8,9]
every_other = numbers[::2] #][0, 2, 4, 6, 8]

Looping Through Lists

By Item (Recommended) By Index
for item in items: for i in range(len(items)):
print(item) print(i, itemsl[i])
Use for values only. Use for position and value.

Pro Tip: Lists are perfect for storing inventory items, player scores, menu options, or any collection where order matters and you might add or remove elements.

Dictionaries

Dictionaries store data as key-value pairs, allowing you to look up values using descriptive keys instead of numeric

indices. They're ideal for structured data like user profiles or configuration settings.

Creating and Accessing Dictionaries

Create

inventory = {
"coffee": 10,
"tea" 5,
"cake™: 3

Keys and values are separated by colons.

Modify Values

inventory["coffee"] =15
inventory["muffin"] = 8

Assignment creates or updates keys.

Common Dictionary Methods

Access Values

coffee_qty = inventory["coffee"] # 10
sugar = inventory.get("sugar", 0) # 0

Use brackets or get() for safe access.

Remove Items

del inventory["cake"]
removed = inventory.pop("tea")

del removes; pop() removes and returns.

Keys & Values Check Membership Length

num_items = len(inventory)
Returns number of keys

if "coffee" in inventory:
print("We have coffee!")

keys = inventory.keys()
dict_keys(['coffee’, 'tea'])
is_empty = len(inventory) ==

values = inventory.values() if "pizza" not in inventory:

dict_values([10, 5]) print("Out of pizza!")
items = inventory.items()
Key-value pairs

Dictionaries (Part 2)

Looping Through Dictionaries

Keys Values
for item in inventory: for qty in
print(item) inventory.values():
print(qty)

Nested Dictionaries

Dictionaries can contain other dictionaries:

shop_data ={
"inventory": {"coffee": 10},
"prices": {"coffee": 3.50}

}

coffee_price = shop_data["prices"]["coffee"] # Access nested values

Access nested values as shown in the example.

Both (Best)

for item, gty in
inventory.items():
print(f"{item}: {qty}")

(D Remember: Dictionary keys must be immutable (strings, numbers, tuples), but values can be

anything.

Functions

Functions are reusable blocks of code that perform specific tasks, helping organize programs, avoid repetition, and improve

maintainability.

Function Basics

Defining Functions

def greet(name):
print(f"Hello, {name}!")

def add(a, b):
returna+b

def get_status():
return "Active"

Define with def, name, parameters, and colon. Indent
body.

Parameters vs Arguments

Parameters
Variables in function definition; placeholders for needed
data.

def calculate_price(quantity, unit_price):

quantity and unit_price are parameters.

Return Values

Calling Functions

greet("Alice")
Prints: Hello, Alice!

result = add(3, 4)
resultis 7

status = get_status()
status is "Active"

Call by name with arguments. Capture returns with assignment.

Arguments

Actual values passed when calling the function.

total = calculate_price(5, 3.50)

5 and 3.50 are arguments.

The [g908]ga statement sends a value back and exits. Functions without it return Nonel

01

02

03

Single Return

def square(x):
return x ** 2

Calculates and returns a single value.

Multiple Returns

def min_max(numbers):
return min(numbers),
max(numbers)

low, high = min_max([3, 7, 2, 9])

Returns multiple values (tuple) for
unpacking.

Early Return

def divide(a, b):
if b==0:
return None
returna/b

Exits function early based on conditions.

Functions (Part 2)

Function Design Guidelines

One Purpose - Each function should do one Use Parameters - Pass values via parameters,

thing well avoid hardcoding

Prefer Return - Return values, don't just print Descriptive Names - Use verbs describing

them, for reusability action: calculate_total(), get_user_input()
Default Parameters

Give parameters default values to make them optional:

def greet(name, greeting="Hello"):
print(f"{greeting}, {name}!")

greet("Alice") # Uses default: "Hello, Alice!"
greet("Bob", "Hey") # Custom greeting: "Hey, Bob!"

Basics of Classes

Classes are blueprints for creating objects that bundle related data and behavior. They are the foundation of object-oriented programming
(OOP), helping structure complex programs by organizing data and functions that operate on that data.

Understanding Classes

What Are Classes?

A class is a blueprint (like a cookie cutter) defining properties (data)
and methods (functions) for objects. Each object created from the
class is an independent instance with its own data.

class Shop:
def _init_ (self):
self.money =0
self.inventory = {}

def show_money(self):
print(f"Money: ${self.money}")

def add_item(self, item, qty):
self.inventory[item] = qty

Key Concepts

__init__ Method

The constructor (__init_) runs automatically when an object is
created, setting initial attribute values.

def __init_ (self, starting_money):
self.money = starting_money
self.level = 1

shop = Shop(100) # Passes 100 to __init__

Instance Variables

Variables belonging to a specific object, defined with
self.variable_name. Each instance has its own copy.

self.money = 0
self.name = "Main Shop"
self.inventory =[]

Creating and Using Objects

Create multiple objects (instances) from a class. Each instance
holds its own separate data.

shop1 = Shop()
shop1.money = 100
shop1.add_item("coffee", 10)

shop2 = Shop()
shop2.money = 50
shop2.add_item("tea", 5)

shop1.show_money() # Money: $100
shop2.show_money() # Money: $50

self Parameter

Every method must have §&llj as its first parameter. IEEERC]

the specific object instance, allowing methods to access its
data.

def add_money(self, amount):
self.money += amount # Modifies THIS object's money

Methods

Functions that belong to a class. They operate on the object's
data and are called via object.method().

def calculate_total(self):
return sum(self.inventory.values())

total = shop.calculate_total()

D Why Use Classes? Classes organize related data and functions, making complex programs easier to understand and maintain.

Complete Example: Player Class

class Player:
def _init_ (self, name):
self.name = name
self.health =100
self.level =1
self.inventory =[]

def take_damage(self, amount):
self.health -= amount
if self.health < O:
self.health =0

def heal(self, amount):
self.health += amount
if self.health > 100:
self.health =100

def level_up(self):
self.level +=1
self.health = 100
print(f"{self.name} reached level {self.level}!")

def add_item(self, item):
self.inventory.append(item)

Usage

player = Player("Hero")
player.take_damage(30)
player.add_item("sword")
player.level_up()

JSON Save & Load

JSON is a lightweight text format for storing and exchanging data. Python's json module simplifies saving and loading
program states, ideal for game saves, user preferences, and application settings.

Why Use JSON?
O

V4

Human-Readable Universal Format Perfect for Python

Plain text, easy to read and debug. Works across different programming Maps naturally to Python types: dicts

Can be edited manually if needed. languages (Python, JavaScript, etc.) to objects, lists to arrays, basic types
and platforms. directly.

Saving Data (Writing JSON)

Basic Save Operation Pretty Printing

import json with open("savegame.json", "w") as f:

json.dump(game_data, f, indent=2)
game_data = {

"player": "Alice", # Output:
"level": 5 #{
} # "player": "Alice",
"level": 5
with open("savegame.json", "w") as f: #1}

json.dump(game_data, f)

Add indent=2 for readable formatting.
json.dump() writes data to a file.

Loading Data (Reading JSON)

Use the Data
Parse JSON
Open File player_name =
data = json.load(f) data["player"]
with open("savegame.json") current_level = data["level"]
as f:

json.load() converts JSON to

Python objects. Access like a Python dict or list.
Open in read mode (default).

Complete Example: Game Save System

import json

def save_game(player_data, filename="savegame.json"):

with open(filename, "w") as f:
json.dump(player_data, f, indent=2)
print("Game saved!")

def load_game(filename="savegame.json"):
try:
with open(filename) as f:
return json.load(f)
except FileNotFoundError:
print("No save file found. Starting new game.")
return None

player = {
"name": "Hero",
"health": 85,
"level": 7,
"gold": 450

save_game(player)

loaded_player = load_game()

if loaded_player:
print(f"Welcome back, {loaded_player['name']}!")
print(f'Level: {loaded_player['level']}")

What Can JSON Store?
Python Type JSON Type
dict object
list, tuple array
str string
int, float number
True, False true, false
None null

Example
{"key": "value"}
[1,2, 3]

"hello"

42,3.14

true

null

Important: JSON cannot directly store custom objects, functions, or classes. Convert these to dictionaries before saving, and

reconstruct them after loading.

Error Handling

Errors (also called exceptions) are inevitable in programming—users enter invalid data, files go missing, networks fail,
and unexpected situations arise. Rather than letting your program crash, you can use error handling to catch problems
gracefully and respond appropriately. This makes your programs more robust and user-friendly.

The Try-Except Pattern

Basic Structure Common Example

try:
Code that might cause an error
risky_operation()

except ErrorType:

try:
gty = int(input("How many? "))
print(f"You want {qty} items")
except ValueError:

What to do if that error occurs print("Please enter a number.")

handle_error() gty =1 # Use default value

If the user types "five" instead of "5", the int() conversion
fails. The except block catches the error and handles it

Python tries to execute the code in the try block. If an
error occurs, it immediately jumps to the matching
except block instead of crashing. gracefully.

Common Exception Types

ValueError

Invalid value for a function, like converting non-
numeric text to int.

try:
age = int("twenty")
except ValueError:
print("Not a valid number!")

FileNotFoundError

Trying to open a file that doesn't exist.

try:
with open("data.txt") as f:
content = f.read()
except FileNotFoundError:
print("File not found!")

KeyError

Accessing a dictionary key that doesn't exist.

try:
price = prices["pizza"]
except KeyError:
print("ltem not found!")
price=0

ZeroDivisionError

Dividing by zero in mathematical operations.

try:
result = total / count

except ZeroDivisionError:
print("Can't divide by zero!")
result=0

Error Handling (Part 2)
Advanced Error Handling

Multiple Except Blocks

Handle different errors differently based on what went wrong.

try:

Some risky code

x =10/ int(input("Enter a number: "))

my_list=[1, 2]

print(my_list[x])
except ZeroDivisionError:

print("Error: Cannot divide by zero!")
except ValueError:

print("Error: Invalid input, please enter a number.")
except IndexError:

print("Error: Index out of range.")

Catch All Errors

Exception catches most errors, stored in e.

try:

result = some_function_that_might_fail()
except Exception as e:

print(f"An unexpected error occurred: {e}")

Log the error for debugging

Optionally, re-raise the exception if it cannot be
handled here: raise

Best Practices

—> Be Specific

Catch specific errors rather than all errors when possible. This

helps you write more targeted error handling logic and
prevents you from accidentally catching errors you don't
expect.

—> Use for User Input

Wrap conversions or operations involving user input in try-
except blocks. Users are unpredictable, and their input is a
common source of runtime errors.

Catch Multiple Errors

Handle multiple error types the same way using a tuple.

try:
num = int("abc") # ValueError
#num =10/ 0 # ZeroDivisionError

except (ValueError, ZeroDivisionError) as e:
print(f"An input or calculation error occurred: {e}")

Else and Finally

else runs if no errors, finally always runs.

try:
file = open("data.txt", "r")
content = file.read()

except FileNotFoundError:
print("File not found!")

else:
print("File read successfully.")
Process content

finally:
if 'file' in locals() and not file.closed:

file.close()

print("Cleanup complete.")

—> Don't Hide Errors Silently

Always do something in an except block. Print an error
message, log the error, notify the user, or take corrective
action. An empty except block can make debugging very
difficult.

—> Combine with Loops

Use try-except inside loops for validation. This allows a
program to gracefully handle invalid entries without crashing,
prompting the user to try again until valid input is received.

Practical Example: Robust User Input

This function keeps asking until valid input is provided.

def get_positive_integer(prompt):
while True:
try:
value = int(input(prompt))
if value <= 0:

print("Please enter a positive number.")
else:

return value
except ValueError:

print("Invalid input. Please enter a whole number.")

Usage

age = get_positive_integer("Enter your age: ")
print(f"Your age is: {age}")

(@ Remember: Error handling isn't about preventing errors—it's about controlling what happens when
they inevitably occur.

Good Program Design

Keep Related Code Together

Group related functions, variables, and classes in the same place. If you're building a shop system, put all inventory functions near each other, all
money-related functions together, and so on.

Good: Related functions grouped
def add_inventory(item, qty):
inventory[item] = gty

def remove_inventory(item):
del inventory[item]

def show_inventory():
for item, gty in inventory.items():

print(f"{item}: {qty}")

This organization makes code easier to find and understand. Consider using classes to bundle related data and functions together.

Avoid Long Functions

If a function is longer than one screen (about 30-50 lines), it probably does too much. LRIt E i SR {olelUI=Ts RillslelTels RS R =F-Tol s [oL TR Ual o]
well.

Bad: One giant function doing everything
def run_shop():
100 lines of code here...

Good: Broken into logical pieces
def display_menu():
Show options

2 def get_user_choice():
Get and validate input

def process_purchase():
Handle buying

def run_shop():
display_menu()
choice = get_user_choice()
if choice == "buy":
process_purchase()

Smaller functions are easier to test, debug, and reuse in different contexts.

Use Clear, Descriptive Names

Variables and functions should explain their purpose without needing comments. Someone reading your code should understand what each element
does from its name alone.

Bad: Unclear names
def calc(x, y):

return x *y + 10
a = calc(5, 3)

Good: Self-explanatory names

def calculate_total_price(quantity, unit_price):
base_cost = quantity * unit_price
shipping_fee =10
return base_cost + shipping_fee

total_cost = calculate_total_price(5, 3)

Use snake_case for variables and functions, PascalCase for classes. Avoid single-letter names except in short loops.

Good Program Design (Part 2)

Keep Related Code Together

Group related functions, variables, and classes in the same place. If you're building a shop system, put all inventory functions near each other, all
money-related functions together, and so on.

Good: Related functions grouped
def add_inventory(item, qty):
inventory[item] = gty

def remove_inventory(item):
del inventory[item]

def show_inventory():
for item, gty in inventory.items():

print(f"{item}: {qty}")

This organization makes code easier to find and understand. Consider using classes to bundle related data and functions together.

Avoid Long Functions

If a function is longer than one screen (about 30-50 lines), it probably does too much. LRIt E i SR {olelUI=Ts RillslelTels RS R =F-Tol s [oL TR Ual o]
well.

Bad: One giant function doing everything
def run_shop():
100 lines of code here...

Good: Broken into logical pieces
def display_menu():
Show options

2 def get_user_choice():
Get and validate input

def process_purchase():
Handle buying

def run_shop():
display_menu()
choice = get_user_choice()
if choice == "buy":
process_purchase()

Smaller functions are easier to test, debug, and reuse in different contexts.

Use Clear, Descriptive Names

Variables and functions should explain their purpose without needing comments. Someone reading your code should understand what each element
does from its name alone.

Bad: Unclear names
def calc(x, y):

return x *y + 10
a = calc(5, 3)

Good: Self-explanatory names

def calculate_total_price(quantity, unit_price):
base_cost = quantity * unit_price
shipping_fee =10
return base_cost + shipping_fee

total_cost = calculate_total_price(5, 3)

Use snake_case for variables and functions, PascalCase for classes. Avoid single-letter names except in short loops.

Good Program Design (Part 3)

Don't Repeat Yourself (DRY)

If copying code, create a function instead. This makes your code more concise, easier to
read, and less prone to errors.

Bad example - Repeated player calculations:

player1_score = 100
player1_bonus =10
player1_adjusted = player1_score + player1_bonus

player2_score = 150
player2_bonus =5
player2_adjusted = player2_score + player2_bonus

player3_score = 80
player3_bonus =12
player3_adjusted = player3_score + player3_bonus

Good example - Reusable function:

def calculate_adjusted_value(score, bonus):
return score + bonus

player1_adjusted = calculate_adjusted_value(100, 10)
player2_adjusted = calculate_adjusted_value(150, 5)
player3_adjusted = calculate_adjusted_value(80, 12)

Test Small Parts Separately

Write and test small functions immediately before building larger programs. This helps catch
bugs early and ensures each component works as expected.

def calculate_discount(price, percentage):
return price * (1 - percentage / 100)

Test cases

assert calculate_discount(100, 10) == 90
assert calculate_discount(50, 50) == 25
assert calculate_discount(200, 0) == 200
print("All discount tests passed!")

Good Program Design (Part 4)

This example demonstrates how code organization can significantly improve readability, maintainability,

and reusability.

Poor Organization

Everything mixed, uses globals, poor naming.

inventory = {"apple": 5, "banana": 10}
price_list = {"apple": 1.0, "banana": 0.5}

def buy_item(item, qty):
global inventory
if item in inventory and inventory[item] >=
qty:
inventory[item] -= qty
total = gty * price_list[item]
print(f"Bought {qty} {item}(s) for
${total:.2f}")
else:
print(f"Not enough {item} in stock.")

buy_item("apple", 2)

"Think Like a Writer: Just as good writers revise their prose, good programmers refactor their code. Your

Better Organization

Uses a Shop class, clear methods, no globals,
descriptive names.

class Shop:
def __init_ (self):
self.inventory = {"apple": 5, "banana":
10}
self.price_list = {"apple": 1.0, "banana™:
0.5}

def process_purchase(self, item_name,
quantity):
if item_name in self.inventory and
self.inventory[item_name] >= quantity:
self.inventory[item_name] -= quantity
total_cost = quantity *
self.price_list[item_name]
print(f"Purchased {quantity}
{item_name}(s) for ${total_cost:.2f}")
else:
print(f"Insufficient {item_name} in
stock.")

my_shop = Shop()
my_shop.process_purchase("apple", 2)

first version doesn't have to be perfect—write it to work, then improve it to be clear."

Debugging Tips

Debugging is the art of finding and fixing errors in your code. Every programmer, from beginners to experts, spends significant time debugging.
The key difference is that experienced programmers have systematic strategies for tracking down problems. These techniques will help you
debug more efficiently and learn from your mistakes.

@ Print Intermediate Values

When your code produces wrong results, use print statements to see what's happening at each step. This is the simplest and most
effective debugging technique.

def calculate_total(prices):
total =0
for price in prices:
print(f"Adding {price}, total is now {total}") # Debug print
total += price
print(f"Final total: {total}") # Debug print
return total

Print variable values before and after critical operations. Once you find the bug, remove the debug prints or comment them out.

= Check Indentation

RO N RN U N C A SR (Ao Sl i (o Em ET S N s E LR E ! | code seems correct but doesn't work, check that all lines
in a block are indented consistently.

Wrong - inconsistent indentation
if x>5:
print("Big")
print("Also big") # Too few spaces

Right - consistent indentation
if x>5:

print("Big")

print("Also big")

Configure your editor to show whitespace characters or use 4 spaces consistently. Mixing tabs and spaces causes hard-to-spot
errors.

Verify Data Types

Many bugs occur when variables have unexpected types. Use type() to check what type a variable actually is.

gty = input("How many? ")
print(f"qty is: {qty}, type: {type(qty)}") #

if gty > 5: # Error! Can't compare string to number
print("Many")

Fix: Convert to int first
gty = int(input("How many? "))

print(f'qty is: {qty}, type: {type(qty)}") #

Remember: input() always returns strings, / always returns floats, list indices must be integers.

Debugging Tips (Part 1.5)
Continue with debugging tips 4-5:

§7 Verify Spelling
Python is case-sensitive and won't warn you about typos in variable names—it just creates a new

variable. Double-check that variable names are spelled exactly the same everywhere.

player_score = 100

player_scoer = 50 # Typo! Creates new variable
print(player_score) # 100 - not what you wanted!

Common mistakes:
e myList vs mylist
e userName vs username

e getData vs getdata

Use consistent naming conventions and enable your editor's autocomplete to avoid typos.

& Test One Function at a Time

When building complex programs, test each function in isolation before connecting everything.
This helps you identify exactly where problems occur.

Test a function alone
def calculate_discount(price, percent):
return price * (1 - percent / 100)

Test with known values

print(calculate_discount(100, 20)) # Should be 80
print(calculate_discount(50, 50)) # Should be 25
print(calculate_discount(200, 0)) # Should be 200

Only after tests pass, integrate into larger program

Write simple test cases with known correct answers. This is called "unit testing."

Debugging Tips (Part 2)

Understanding common error messages and employing advanced debugging techniques are crucial for efficient
troubleshooting. This section details frequent Python errors and strategies to effectively locate and resolve them.

Common Error Messages & Solutions

Error Message Solution

SyntaxError broke grammar rules — check for missing colons,
quotes, parentheses

NameError variable doesn't exist = check spelling or initialize first

TypeError wrong type for operation — check types, convert if
needed

IndexError list index out of range — check length, indices start at
0

KeyError dictionary key doesn't exist = use 'in' to check or .get()

IndentationError inconsistent spaces/tabs — use 4 spaces consistently

Advanced Debugging Techniques

Use Python Debugger (pdb) Binary Search Debugging Rubber Duck Debugging
Use set_trace() to pause When a bug is difficult to Explain your code line by line to
program execution and inspect pinpoint, add print statements an inanimate object (like a
variables, step through code, and roughly halfway through your rubber duck) or a colleague. The
examine the call stack. This code. If the bug occurs before act of articulating your logic
provides a powerful way to the print, move the print often helps you spot flaws,
understand program flow at statement earlier; if after, move it assumptions, or
critical points. later. Repeat to quickly narrow misunderstandings in your own
down the problematic section. code.

"Bugs are learning opportunities. Every error teaches you something about how Python works."

@ Pro Tip: Before asking for help, create a minimal example that reproduces the bug. This forces you to isolate
the problem and provides a clear, concise issue for others to understand.

